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In addition to diatoms, whose role in the global Si 
cycle is well known (Nelson et al., 1995; Ragueneau et 
al., 2000; Tréguer and De La Rocha, 2013), other silicon 
utilizing microeucaryotes live in aquatic ecosystems – 
these are scaled chrysophytes, heterotrophic protists 
rotosphaerids, colorless free-living thaumatomonad 
flagellates, centrohelid heliozoans. These organisms 
transform silicic acid dissolved in water into elements 
of shells of a species-specific structure – siliceous scales 
and bristles (Fig. 1) or resting stomatocysts (Fig. 2).

The scaled chrysophytes include representatives 
of the Chrysophyceae class Pascher, from the 
families of Paraphysomonadaceae Preisig, Hibberd, 
Mallomonadaceae Diesing, Synuraceae Lemmermann. 
In total, about 350 taxa of silica-scaled chrysophytes are 
described (Guiry and Guiry, 2022). Scaled chrysophytes 
are a widespread group, they form a significant part of 
the plankton biomass of many freshwater reservoirs, 
there fore they play an important role in the structural 
and functional organization of freshwater ecosystems. 
Thaumatomonads are silica-scaled colorless free-
living flagellates. Rotosphaerids are silica scaled 
organisms with filopodia that facilitate phagotrophic 
nutrition and a slowly rolling or creeping form of 
motility (Nicholls, 2012) Centrohelid heliozoans are 
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Fig.1. Scales of different silicon utilizing protists. A – a 
decayed cell of scaled chrysophytes; B – siliceous scales of 
centrochelid heliozoans.

predatory amoeboid flagellate protists, uniting more 
than 100 species (Zlatogursky, 2012; Shɨshkin et al., 
2018). Representatives of these groups of heterotrophic 
protists play an important role in the food webs of 
aquatic microbenthos ecosystems, acting as passive 
predators. During periods of their maximum abundance, 
heterotrophic protists rise into the plankton for the 
purpose of settling (Ostroumov, 1917; Mikrjukov, 
2002). Silicon utilizing protists and stomatocysts of 
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chrysophytes have micron sizes and species-specific 
ornamentation, which is detected using transmission 
and scanning electron microscopy methods.

In aquatic ecosystems, certain types of silicon 
utilizing protists are indicators of environmental factors 
such as pH, temperature, electrical conductivity, total 
phosphorus concentration, salinity, etc. (Hahn et 
al., 1996; Mikrjukov, 2002; Gavrilova et al., 2005; 
Leonov and Mylnikov, 2012; Siver, 2015; Prokina 
and Mylnikov, 2019; Prokina and Philippov, 2019; 
Lengyel et al., 2022). In addition, with an increase in 
the concentration of CO2 in the atmosphere (Schindler, 
2001; Rühland et al., 2008) in some boreal and Arctic 
lakes, an increase in populations of scaled chrysophytes 
is increasingly observed (Wolfe and Siver, 2013; 
Mushet et al., 2017). One of the characteristic features 
of scaled chrysophytes is the ability to form siliceous 
stomatocysts when changing chemical or physical 
parameters, In some temperate zones a low percentage 
of chrysophycean cysts often shows a more eutrophied 
stage, since these algae are most often less competitive 
in water with a high nutrient content (Smol, 1985). In 
the polar regions, this ratio has been proposed to be 
used to assess the ice cover (Smol, 1983; 1988). Later, 
the ratio of cysts to diatoms was used (Cumming et al., 
1993), Later, the ratio of cysts to diatoms was used to 
illustrate the potential of cysts as indicators of lake 
water salinity in the past, and this ratio was also used 
to study the climatic trends of the Holocene history of 
Lake Losiny (Minnesota State) (Zeeb and Smol, 1993). 
The seasonality of their formation was determined by 
the layers of cysts in layered sediments (Battarbee, 
1981; Peglar et al., 1984; Grönlund et al., 1986). 
Heterotrophic protists and centrohelid heliozoans 
live in a wide range of environmental factors and are 
considered eurybionts (Stoupin et al., 2012). However, 
in most publications there is no data on the parameters 
of the habitat during the sampling period, identifying 
the boundaries of such parameters at which a particular 
species was detected in natural samples would allow 
determining the autecology of species (Finlay et al., 
1998) and to clarify the degree of their eurybiont. 
Thus, the study of silicon utilizing protists may have an 
application value for use in environmental monitoring.

The presence of relevant species and morphotypes 
of stomatocysts in samples can be detected not only from 
modern reservoirs, but also in sediments of different ages, 
therefore, silicon utilizing protists, like stomatocysts, 
are relevant objects not only in monitoring modern 
plankton, but also in paliolimnology, paleogeography, 
in terms of evolution and paleoreconstructions. For 
example, scaled chrysophytes belonging to the genus 
Synura Ehrenberg was very likely formed before the 
Cambrian period of the Paleozoic era (330 mya) (Boo et 
al., 2010). And already formed scales, having a different 
and complex structure, of heterotrophic protists of 
the genus Rabdiophrys Raine and scaled chrysophytes 
genera Mallomonas Perty and Synura, were found in 
deposits of the Eocene Giraffe Pipe sediments and in 
the Paleocene Wombat sediments in the area of the Lac 
de Gras kimberlite field in the Northwest Territories 
of Canada (64°44′ N, 109°45′ W; paleolatitude 

62°-64° N) (Siver and Wolfe, 2005a; 2005b; 2009; 
Siver and Lott, 2012; Siver et al., 2013; 2015; Siver 
and Skogstad, 2022). Chrysophycean stomatocysts in 
paleolimnological studies were assigned to one group 
and considered relative to the total number of diatoms 
calculated on the same microscopic preparations (for 
example, Smol, 1983; Stoermer et al., 1985; Grönlund 
et al., 1986; Harwood, 1986). D. Smol suggested (Smol, 
1985) using the ratio of diatoms to cysts (D/C) as a 
coefficient of eutrophication of reservoirs. The proposed 
methods, with their relative simplicity, provide useful 
information about the environmental conditions in 
paleovodoems (Zeeb and Smol, 2001). Due to the 
complexity of determining the species of stomatocysts, 
the international group for the study of statospores 
International Statospore Working Group (ISWG) 
(Cronberg and Sandgren, 1986), digital designations 
of morphotypes of stomatocysts have been adopted. To 
date, more than 800 morphotypes of stomatocysts have 
been described in the world, of which more than 200 
are known for Russia. On the territory of Russia, studies 
of modern and fossil stomatocysts were carried out in 
the lake. Baikal in the sediments of the Lena River and 
Lake “TS-9” on the Taimyr Peninsula, the Chukotka 
Peninsula, in Lake Khubsugul, Lake Teletskoye and in 
the North of Russia (Vorobyova et al., 1996; Wilkinson 
et al., 2001; Firsova and Likhoshway, 2006; Firsova 
et al., 2008; 2012; Bazhenova et al., 2012; Voloshko, 
2016). 

The first studies of scaled chrysophytes of 
Eastern Siberia using electron microscopy were carried 
out in the Khanty reservoir, the Khanty River, in small 
rivers flowing into the reservoir, and in the Big Khanty 
Lake (Balonov and Kuzmina, 1986); as a result, 29 
species were identified. The use of new methods has 
made it possible to reliably identify 14 species of scaled 
chrysophytes in Lake Baikal (Vorobyova et al., 1992), 
and 5 species in the Irkutsk reservoir (Vorobyova et al., 
1996). Later, foreign scientists investigated the species 
composition of scaled chrysophytes on the Taimyr 
Peninsula (Duff, 1996; Kristiansen et al., 1997). The 
study area included small unnamed lakes (Duff, 1996), 
Lake Taimyr, Lake Engelhardt, a lake in the north of 

Fig.2. The variety of morphotypes of chrysophycean 
stomatocysts from Vorota Lake (Yakutia) (1-5) and 
Boguchany reservoir (6-8). A – Stomatocyst 031, Duff & Smol; 
B – Stomatocyst 498, Firsova & Bessudova; C – Stomatocyst 
314, Firsova; D – Stomatocyst 506, Firsova & Bessudova;  
E – Stomatocyst 501, Firsova & Bessudova; F – Stomatocyst 
489, Firsova & Bessudova; G – Stomatocyst 487; Firsova & 
Bessudova; H – Stomatocyst 076 Duff & Smol. Scale – 2 µm.
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the village of Khatanga, a lake in the Talnakh district 
(the city of Norilsk) and small temporary reservoirs 
(Kristiansen et al., 1997). A total of 23 species have 
been found on the Taimyr Peninsula. Recent studies on 
the scaled chrysophytes of Eastern Siberia have been 
conducted in the lake. Frolikha (Transbaikalia) (Gusev 
and Kulikovsky, 2013; Gusev, 2016). As a result, 10 
species were identified.

The first study of chrysophycean stomatocysts 
carried out using electron microscopy on the basis of the 
cell ultrastructure department was published in 1996 by 
S.S. Vorobyova and co-authors. The article contained 
descriptions and illustrations of 7 morphotypes, 5 of 
which were described for the first time. As a result 
of studies of the continuous Baikal chronicle of 
sedimentary deposits of siliceous microfossils, mainly 
diatoms, the presence of siliceous cysts in sediments of 
Lake Baikal of different ages was noted (Bradbury et 
al., 1994; Likhoshway, 1999) and in modern bottom 
sediments (Stoermer et al., 1995; Likhoshway et al., 
2005), but their structure has not been described.

The method of electron microscopy has 
significantly expanded the possibilities for studying 
these organisms. The species composition of scaled 
chrysophytes was studied in the zone of mixing of the 
waters of the Yenisei River and the Kara Sea, as well as in 
thermokarst lakes of the Lower Yenisei basin (Bessudova 
et al., 2015; Bessudova et al., 2016; Firsova et al., 2017; 
Bessudova et al., 2018a). In total, 40 species of scaled 
chrysophytes were found in the studied areas. Based on 
the original data obtained on the species diversity, the 
distribution of scaled chrysophytes relatively changing 
hydrochemical parameters of the environment in the 
river-sea water mixing zone, summary data taking 
into account the literature on the occurrence of these 
organisms and their autecology, a monograph has been 
compiled (Bessudova et al., 2016).

The study of scaled chrysophytes inevitably led to 
a more detailed consideration of heterotrophic protists 
due to the similarity in size, timing of development and 
structure of siliceous elements. Since earlier studies 
of the ecology of diversity and seasonal dynamics of 
silicon utilizing protists from reservoirs in Eastern 
Siberia have not been conducted, electron microscopy 
methods have opened up new prospects.

For the first time in Eastern Siberia, the species 
composition of heterotrophic protists in a system 
connected by watercourses, from Lake Baikal to 
the Kara Sea, has been studied. A total of 29 species 
of heterotrophic protists were found: 21 species 
of centrohelid heliozoans, 6 species belonging to 
rotospherids and one flagellate protist (Bessudova et 
al., 2021a). It is shown that the most diverse silicon 
utilizing heterotrophic protists are represented in the 
river-sea and river-lake ecotonic zones. It was revealed 
that even a small increase in salinity sharply limits the 
diversity of these organisms. However, two species 
with a wide ecological valence have been identified, 
occurring from the mouth of the Yenisei River to the 
northernmost section of the northeastern part of the 
Kara Sea (Bessudova et al., 2021a). The distribution of 
chrysophycean stomatocysts during mixing of fresh and 

salty waters was also studied (Firsova and Tomberg, 
2012). 12 morphotypes of stomatocysts were found 
in plankton and sediments of mineralized meromictic 
Lake Shira (Khakassia, Russia) (Firsova, 2014).

The species composition and ecology of scaled 
chrysophytes and stomatocysts in the Baikal region 
have been studied in the most detail. In 2006, an atlas 
of chrysophycean stomatocysts was created, which 
included a detailed description of 93 morphotypes 
of fossil cysts from Holocene and Upper Pleistocene 
bottom sediments and 33 morphotypes from Baikal 
plankton (Firsova and Likhoshway, 2006). In the 
future, the seasonal dynamics of stomatocysts from 
phytoplankton of Southern Baikal was studied. It was 
revealed that siliceous stomatocysts of golden algae 
make a significant contribution to phytoplankton, 
reaching the highest values (46.8×103 cysts per l) 
in August-October with a minimum concentration of 
biogens. The D/C coefficient (the ratio of diatom and 
cyst cells) varies throughout the year, reflecting the 
seasonal succession of phytoplankton and changes in the 
concentration of biogenic elements in the photic layer. 
50 morphotypes of cysts have been identified, which 
are divided into 25 groups according to morphological 
features. The selected groups of cyst morphotypes have 
different seasonal dynamics. Group 5 cysts (with spikes 
of various lengths on the equatorial and posterior parts 
of the cysts) dominate over the other morphotypes 
and reach the highest concentration (13.6×103 cysts 
per l) in August (Firsova et al., 2008). The geography 
of research gradually expanded. Siliceous microfossils 
were studied in the Upper Miocene deposits of 
Transbaikalia (in the Jilindin formation of the eastern 
part of the Amalat paleodoline of the Amalat plateau 
of the Vitim Plateau). It was noted that stomatocysts 
of chrysophycean algae were found almost throughout 
the section. A total of 26 morphotypes of cysts were 
found, among which 6 new ones were identified. The 
dominant (up to 57%) were smooth, without collar and 
ornamentation (Mallomonas, Paraphysomonas  (Stokes) 
DeSaedeleer, Chrysosphaerella Lauterborn). The total 
number of cysts varied from 7 thousand to 82 million 
copies/g. The largest number of cysts (65-82 ×106 cysts 
per g) was observed in the depth range from 176-172 
m. The values of the D/C coefficient (2.7-6.1) proposed 
earlier to characterize the trophic capacity of the 
reservoir (Smol, 1985) at this horizon were minimal, 
which indicates a possible decrease in the trophic content 
of the water reservoir during this period (Usoltseva et 
al., 2008). In the Pleistocene-Holocene deposits of Lake 
Elgygytgyn (Chukotka), 8 morphotypes of cysts were 
found, of which 3 were new to science. It was shown 
that smooth unornamented cysts without collars and 
complex ornamentation (more than 40%) most often 
prevailed among the morphotypes. The distribution 
pattern of various morphotypes of golden algae cysts 
has been studied (Firsova, 2013). In the Miocene 
deposits of the Vitim plateau in the core of sle. 7236 in 
the depth range of 126-249 m, 60 morphotypes of cysts 
were found, of which 9 are new to science. To study 
the nature of the distribution of various morphotypes, 
they were divided into 28 groups (GV) according to the 
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shape, ornamentation and structure of the collar. It was 
revealed that the distribution of morphotype groups in 
the core had a different character. In the middle part 
of the core (depth interval 199-168 m), the greatest 
variety of stomatocysts was noted. During this period, 
the conditions in the reservoir were most favorable for 
both the development of cysts and planktonic diatoms 
(Firsova et al., 2010).

In 2012, the analysis of microfossils from the 
core of Upper Pleistocene and Holocene sediments 
of the southern part of Lake Khubsugul revealed 
36 different morphotypes of stomatocysts. Some 
of them were assigned to the genera Mallomonas, 
Chrysosphaerella, Paraphysomonas and Dinobryon 
Ehrenberg 20 morphotypes were described as new to 
science. The abundance and diversity of morphotypes 
of stomatocysts in the core sample varied depending 
on the age of the deposits. It is noted that the highest 
diversity of morphotypes is observed in the layers 
corresponding to the periods of development of the 
cold-water diatom Cyclotella bodanica Eulenstein ex 
Grunow. Smooth (unornamented) morphotypes are 
the most common in sediments. It has been established 
that the morphotypes H12, H19 and H22 are typical 
for Lake Khubsugul, which occur throughout the core 
depth and, at certain intervals, account for up to 40% 
of the total number of stomatocysts. The intervals when 
the dried-up southern part of the lake was again filled 
with water were characterized by the highest values 
of D/C, which means that the trophic level of the lake 
temporarily increased during these periods (Firsova et 
al., 2012).

The revision of the scaly chrysophytes of Lake 
Baikal made it possible to supplement the species list 
with 13 species, and amounted to 25 species (Bessudova 
et al., 2017). The seasonal dynamics of these organisms 
is revealed, it is shown that the greatest variety of 
scaly chrysophytes is characteristic of the Southern 
and Middle regions of Lake Baikal. The maximum 
abundance and species diversity was noted in the 
autumn period. Also, the composition of chrysophytic 
stomatocysts was replenished with 8 morphotypes new 
to Baikal, of which 5 are described as new to science. 
For 3x, the presence of scales and their structure made 
it possible to establish the species (Firsova et al., 2017; 
2018)

A study of the mouths of rivers flowing into 
Baikal, small bays and straits revealed a high diversity 
of scaled chrysophytes, which amounted to 66 species 
(Bessudova et al., 2018b, 2018c) and morphotypes of 
stomatocysts – 58, of which 25 were described as new 
(Firsova et al., 2018). It is shown that large rivers – 
Upper Angara, Barguzin and Selenga affect the lake. 
Baikal, increasing the diversity of scaled chrysophytes 
in its Southern, Middle and Northern basins, however, 
due to the difference in habitat conditions, their 
distribution is limited. The greatest diversity recorded 
in shallow, well-warmed waters rich in nutrients is 
significantly reduced (from 66 to 17) when entering 
a cold oligotrophic lake. It was found that out of 25 
species registered in the lake, 8 species were not found 
in the tributaries. Rare species have been found in the 

mouths of these large rivers, modified scales of the 
species Mallomonas striata Asmund have been observed. 
The change in the morphology of the scales could be 
triggered by a high phosphorus content (Bessudova 
et al., 2018b). In July 2018 in the floodplains of the 
Selenga and Barguzin rivers, a continuous period of 
low water was interrupted by high water. A study of 
the waters during this period showed that the species 
composition of the scaled chrysophytes on the one hand 
significantly decreased (to 23 species), on the other 
hand, it was enriched with new species for the Baikal 
region, amounting to 79 species (Bessudova et al., 2020). 
After analyzing two years of different water content, we 
came to the conclusion that the high diversity of scaled 
chrysophytes in the mouths of the main tributaries of 
Lake Baikal, Selenga, Upper Angara and Barguzin in 
low water conditions may be caused by previous floods. 
Flooding of floodplains led to the unification of small 
streams and lakes, which enriched their flora due to the 
spread of a wide range of species. The retreat of water 
stimulated the flowering of phytoplankton, in particular 
scaled chrysophytes, in warm and shallow reservoirs 
with a high level of biological productivity, which 
contributed to the diversity of scaled chrysophytes in 
the Baikal region. The alternation of floods and low 
water levels created different environmental conditions 
and stimulated the dynamics of the ecosystem, which 
allowed the formation of a “hotspot” for the diversity of 
scaled chrysophytes (Bessudova et al., 2020).

The waters of the largest hydroelectric power 
plant in Russia during the first years of operation at full 
capacity – the Boguchany reservoir have been studied. 
The influence of the source of the Angara River – Lake 
Baikal can be traced in the species composition of the 
scaled chrysophytes of the Boguchany reservoir. The 
species composition is not high and consists of only 23 
species (Bessudova and Likhoshway, 2017). At the same 
time, 35 morphotypes of stomatocysts were found, 10 
of them were registered for the first time in Russia and 
nine morphotypes new to science were described (Fig. 
2) (Firsova et al., 2019). As a result of these studies, 
the list of chrysophycean stomatocysts of the Baikal 
region was expanded to 203. The data obtained not 
only expand the information about the diversity of 
stomatocysts, but also will allow further assessment of 
changes in the state of the reservoir.

After analyzing the scattered literature data on 
the distribution of scaled chrysophytes in northern 
reservoirs, above the 60th parallel north after the 
last glaciation of the Pleistocene, we identified 
hydrochemical parameters that significantly affect 
the distribution of these organisms (Bessudova et al., 
2021b). Territories above the 60th parallel north were 
affected by glaciation at the end of the Pleistocene, 
and the lakes located here and their microflora were 
formed mainly at the beginning of the Holocene. We 
analyzed the distribution of scaled chrysophytes in 193 
northern reservoirs. The formation of flora and species 
richness of scaled chrysophytes is most influenced by 
the location of the reservoir, temperature and water 
conductivity. Reservoirs similar in species composition 
can be significantly removed in the latitudinal 
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direction. Eighteen species and one variety out of 165 
discovered taxa found here have a clear similarity with 
ancient related groups; they are found in all studied 
regions and account for 6 to 54% of the total number 
of scaled chrysophytes. The settlement of scaled 
chrysophytes in northern reservoirs could occur at the 
end of the Pleistocene – the beginning of the Holocene 
along the circumpolar freshwater network of glacial-
underground lakes, and the final composition of the 
flora was determined by the parameters of the habitat 
of each individual reservoir and the region in which the 
reservoir is located.

We continued our research on the biodiversity 
and ecology of scaled chrysophytes in collaboration 
with colleagues from the Institute of Cryolithozone 
Problems SB RAS in the remote and unexplored 
northern and Arctic regions of the Asian part of Russia, 
the Republic of Sakha (Yakutia). The biodiversity 
of silicon utilizing protists of reservoirs of Kotelny 
Island, Arctic, latitude 75°53 N was studied (Bessudova 
et al., 2022a (in press)). The research area is part of 
the Novosibirsk Islands archipelago. 17 species of 
silica scaled and 8 heterotrophic protists were found 
in the studied small reservoirs. On an Arctic island 
remote from the mainland, widespread species and 
cosmopolitans predominate, however, there are also 
some species specific to the area.

In large lakes located at the Cold Pole of the 
Northern Hemisphere – Labynkyr and Vorota, 23 species 
of scaled chrysophytes were identified (Bessudova et 
al., 2019). Rare species have been discovered, seasonal 
dynamics of chrysophytes has been investigated. 76 
morphotypes of stomatocysts were also found in the 
waters of lakes, 51 of which are widespread, 24 of them 
were noted in Russia earlier and 25 were described as 
new (Firsova et al., 2020).

A high species diversity of scaled chrysophytes 
was revealed in the mouths of the Arctic rivers of 
Yakutia, numbering 82 species (Bessudova et al., 
2021c), as well as in the Arctic waters of the Tiksi 
region, numbering 65 species (Bessudova et al., 2022b). 
New and rare Arctic species of scaled chrysophytes 
have been discovered (Bessudova et al., 2022b; 
2022c). The hydrochemical parameters of the waters 
are analyzed and the main factors affecting their high 
diversity are identified (Bessudova et al., 2022b). The 
high diversity of these organisms is formed mainly from 
polyzonal and widespread species, but since 2008-2010 
there has been an increase in the relative content of 
boreal species compared to the data obtained over the 
previous 30 years of studying northern reservoirs. The 
observed trends of climate warming may contribute 
to the Northward movement of representatives of the 
boreal flora. For a number of species, the research area 
is the northernmost habitat to date. Physico-chemical 
factors affecting the species composition and species 
richness of scaled chrysophytes in the study area have 
been identified.

The studied reservoirs of the Baikal region, the 
mouth of the Olenek River, as well as the Tiksi area can 
be considered “hot spots” of the scaled chrysophytes 
biodiversity, along with 3 previously marked points of 

the world. Also, in the mouths of the Arctic rivers of 
Yakutia and in small reservoirs of the Tiksi region, a 
high species diversity of silicon utilizing heterotrophic 
protists numbering 50 species was revealed (Bessudova 
et al., 2022d (in press)).

The study of the biodiversity of silicon utilizing 
protists using electron microscopy methods in 
combination with hydrochemical parameters has made 
a significant contribution to our knowledge of these 
organisms as indicators of changes in environmental 
conditions, which can serve as a criterion in assessing 
the state of modern reservoirs and an additional basis 
in the construction of paleoreconstructions in Eastern 
Siberia.
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