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1. Introduction

Diatoms are a widespread group of organisms 
that inhabit very diverse ecosystems: seas, oceans, 
freshwater rivers, lakes; they can inhabit the ice surface 
and be endosymbionts in dinoflagellates (Bondarenko 
et al., 2006; Nikulina and Kociolek, 2011; Gagat et 
al., 2014; Horner, 2018; Wolf et al., 2019). At present, 
the number of diatom species is debatable; according 
to some authors, taking into account cryptic species 
the total number of diatom species is estimated at 
100,000 to 200,000 (Mann and Vanormelingen, 2013). 
The AlgaeBase database contains information on 
approximately 18 thousands extant and fossil diatom 
species (Guiry and Guiry, 2022). 

Numerous studies have shown that diatoms 
selected at one point are genetically heterogeneous 
(Rynearson and Armbrust, 2004; Casteleyn et al., 2009; 
Evans et al., 2009;  Härnström et al., 2011; MacGillivary 
and Kaczmarska, 2011; Kaczmarska et al., 2014; Tesson 
et al., 2014; Chen and Rynearson, 2016; Wolf et al., 
2021). Genetic heterogeneity is maintained through 
the sexual process and there are suggestions that it 
is necessary for more efficient adaptation to changes 
in the environment (Rynearson and Armbrust, 2004; 
Tesson et al., 2014).

Previously, it was shown that the V3–V4 
region of 18S rRNA can be used to identify diatoms, 
since the divergence in this fragment is sufficient to 
separate several hundred species (Zimmermann et 
al., 2011; Luddington et al., 2012). The exceptions 
are representatives of the genus Stephanodiscus 
Ehrenberg, and therefore, for their identification, it 
was proposed to use additionally a fragment containing 
internal transcribed spacers (ITS) and the 5,8S rRNA 
gene (Zimmermann et al., 2011). Thus, the use of 
the V3-V4 region of the 18S rRNA gene is sufficient 
to identify species. However, comparison of the level 
of 18S rRNA divergence with other marker genes 
(ribulose-1.5-bisphosphate carboxylase/oxygenase 
large subunit – rbcL, cytochrome C oxidase subunit 
1 – cox1, ITS, universal plastid amplicon – UPA) in 
diatoms showed that the rate of mutation accumulation 
in the gene cox1 is higher (Evans et al., 2007; Guo et 
al., 2015). Previously, it was found that phylogenetic 
analysis of the cox1 gene fragment in diatoms enables 
to differ genotypes of the same species isolated from 
geographically distant points (Ehara et al., 2000; 
Evans et al., 2007; Hamsher et al., 2011). Thus, using 
a fragment of the cox1 gene, perhaps, to establish the 
genotypes of species of the genera Ulnaria (Kützing) 
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Compère and Fragilaria Lyngbye selected from different 
habitats in Lake Baikal. 

The species Ulnaria acus (Kützing) Aboal was 
chosen as the object of study, which is a cosmopolitan 
species living in freshwater bodies of Eurasia (Aboal 
et al., 2003; Medlin et al., 2008; Kulikovskiy et al., 
2016; Kahlert et al., 2019; Liu et al., 2019; Podunay et 
al., 2021). U. acus was found in water bodies in North 
America (Eberle, 2008; Smith, 2010; Bergey et al., 
2017), South America (Vouilloud, 2003; Crossetti and 
Bicudo, 2008), as well as in other regions (Sherwood, 
2004; Bostock and Holland, 2010; Marazzi, 2014; Khairy 
et al., 2017). The species is also one of the dominant 
species in the phytoplankton composition of Lake 
Baikal (Popovskaya and Genkal, 1998; Bondarenko et 
al., 2019). At present, there are no data on the diversity 
of genotypes of this species in Lake Baikal. The aim 
of this work was to identify the diversity of genotypes 
of U. acus strains isolated from different freshwater 
ecosystems of Eurasia based on the analysis of the gene 
fragment cox1. According to the concept of biological 
species, we examined sexual compatibility of the 
investigated populations.

2. Materials and methods
2.1. Sampling and culturing

To isolate monoclones, phytoplankton samples 
were placed in sterile plastic flasks with Diatom Medium 
(DM) (Culture collection..., 1988) and transported to 
the laboratory. A total of 31 strains were isolated from 
the samples collected at different parts of Lake Baikal 
(Supplementary Table S1) and in addition, 10 strains 
of U. acus were taken from the World Ocean Diatoms 
Collection (WODC) of the Karadag Scientific Station 
(Russia) (r. Sarthe, France; r. Erdre, France; Lake Ritsa, 
Abkhazia; Lake Matano, Indonesia and Lake Khuvsgul, 
Mongolia) (Supplementary Table S1). Isolated strains 
were grown in 250 ml Erlenmeyer flasks with DM at 
8-18°C and illuminated with 16 μEinstein m–2 s–1 
under a 12:12-h light:dark photoperiod (Zakharova et 
al., 2020). 

2.2. DNA extraction, PCR and marker sequencing 

DNA was extracted from the biomass 
of diatoms, as described earlier (Marchenkov 
et al., 2018). 18S rRNA fragment (~1100 bp) 
was amplified using primer pair 18S_F 5’– 
AACCTGGTTGATCCTGCCAGT-3’ (Katana et al., 2001) 
and 18S_R 5’– GTTTCAGHCTTGCGACCATACTCC-3’ 
(Guo et al., 2015). Amplification was performed with 
Taq DNA polymerase (Evrogen, Russia). PCR mixture 
consisted of 1x Taq Turbo buffer, 1.25 units/µ of Taq 
DNA polymerase, 0.2 mM dNTP mixture, 2.5 mM total 
Mg2+, 0.2 μM of each primer, and 50-100 ng DNA. 
PCR temperature profile was as follows: 3 min initial 
denaturation at 95°C, then 35 cycles of (30 sec at 95°C, 
30 sec at 56.5°C, 70 sec at 72°C), and 3 min hold at 
72°C. 

Fragment gene of cox1 (~700 bp) 
was amplified using primer pair cox1_1F 

5’-ATGAAGTTTGCTAATCGATGGT-3’ and cox1_714R 
5’-AAAAAGGTGTTGGAACAGTACAG-3’, which were 
selected on the base of the chloroplast genome U. acus 
GenBank JQ088178.1 (Ravin et al., 2010). Amplification 
was performed with Taq DNA polymerase (Evrogen, 
Russia). PCR temperature profile was as follows: 3 min 
initial denaturation at 95°C, then 35 cycles of (30 sec 
at 95°C, 30 sec at 56.5°C, 45 sec at 72°C), and 3 min 
hold at 72°C. 

PCR products were analyzed by electrophoresis 
in 1.5% agarose gel and purified with AMPure XP 
(Agencourt, USA) or Monarch® DNA Gel Extraction 
Kit (NEB, USA). They have been sequenced by use of 
BigDye Terminator v.3.1 (Applied Biosystems, USA) 
and analyzed on 3130XL or 3500XL genetic analyzer 
(Applied Biosystems, USA) in SB RAS Genomics Core 
Facility (Novosibirsk, Russia).

2.3. Phylogenetic analysis 

The dataset cox1 fragment for phylogenetic 
reconstruction contains 40 monoclonal strains (32 
strains from Lake Baikal, 8 strains from WODC) 
sequenced in this study and 46 sequences from dataset 
NCBI nr database were selected from different groups 
of diatoms (Supplementary Table S1). 

The dataset 18S rRNA fragment for phylogenetic 
reconstruction contains 41 monoclonal strains (31 
strains from Lake Baikal, 10 strains from WODC) 
sequenced in this study and 80 sequences from dataset 
NCBI nr database were selected from different groups 
of diatoms (Supplementary Table S1). 

Best model of nucleotide substitutions was found 
using MEGA 6.0 (Tamura et al., 2013). Reconstruction 
of phylogenetic relationships for the 18S rRNA and the 
cox1 gene fragments was performed using MEGA 6.0 
(Tamura et al., 2013). Maximum Likelihood (ML) trees 
constructed using the General Time Reversible (GTR) 
model (Lanave et al., 1984) with gamma-distributed 
rate variation across sites. Confidence of branching 
was calculated using 1000 bootstrap support replicas 
(Zuckerkandl and Pauling, 1965).  

Estimates of Evolutionary Divergence between 
Sequences (p-distance) was conducted using MEGA 6.0 
(Tamura et al., 2013). 

2.4. Mating experiments

To check mating compatibility, clones were 
maintained in exponential growth phase and inoculated 
in pairwise combinations into fresh culture medium 
(10 ml) in glass Petri dishes (5 cm diameter). Culture 
conditions were the same as for vegetative growth. 
The mixtures were checked daily under the inverted 
microscope at the magnification 200x for the presence 
of sexual (gametes, zygotes, auxospores), initial and 
post-initial cells. An appearance of the latter suggests 
the sexual compatibility of parental clones. Several 
post-initial cells of the first generation were isolated 
in order to test their fertility. After reaching a suitable 
cell size, the descendant clones were mated with 
parental clones (backcrossing) or with clones known to 
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reproduce sexually. We concluded that the populations 
were conspecific, provided the second generation was 
viable (Supplementary Table S2). 

3. Results and discussion

As a result of the determination of nucleotide 
sequences, 41 fragments of the V3-V4 region of the 18S 
rRNA and 40 fragments of the cox1 gene were obtained 
for monoclonal cultures of diatoms from Lake Baikal 
(Russia), r. Sarthe (France), r. Erdre (France), Lake 
Ritsa (Abkhazia), Lake Matano (Indonesia), and Lake 
Khuvsgul (Mongolia) (Fig. 1 and Supplementary Table 
S1. It should be noted that the amplicons for the strains 
from the Lake Khuvsgul (Mongolia) were not obtained 
with the selected primers. We assume that this is due to 
the presence of substitutions in the regions of the cox1 
gene, with which the primers hybridize.

Phylogenetic analysis of the 18S rRNA gene 
fragment containing the V3-V4 region showed that 
all sequences formed one clade with a high degree 
of support (100%) that belongs to the species U. acus 
(Fig. 2). As shown earlier, the 18S rRNA gene fragment 
containing the V3-V4 region is sufficient to establish 
the species identity of diatoms (Zimmermann et al., 
2011; MacGillivary and Kaczmarska, 2011; Luddington 
et al., 2012; Kaczmarska et al., 2014). 

Fig.1. Scheme map of sampling sites. A – Eurasia; B – 
Russia, Lake Baikal. The places, from which the strains were 
isolated are marked with circles of different color: blue – 
Russia, Lake Baikal; black – Abkhazia, Lake Ritsa; dark blue – 
France, Le Mans, r. Sarthe; yellow – France, Nantes, r. Erdre; 
green – Mongolia, the Lake Khuvsgul , red – Indonesia, Lake 
Matano.

Fig.2. Maximum likelihood phylogenetic tree of gene 18S rRNA using model GTR with gamma-distributed rate variation 
across sites (MEGA6.0). The sequences obtained in this work are marked with circles of different color: blue – Russia, Lake Baikal; 
black – Abkhazia, Lake Ritsa; dark blue – France, Le Mans, r. Sarthe; yellow – France, Nantes, r. Erdre; green – Mongolia, the Lake 
Khuvsgul , red – Indonesia, Lake Matano.
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Phylogenetic analysis of cox1 gene fragment 
showed bootstrap support for clade 1 (78 %), clade 2 
(89 %) and clade 3 (91 %) (Fig. 3). Clade 1 contains 
sequences of 26 strains isolated from three basins of 
Lake Baikal, 2 strains from r. Erdre (France), 1 strain 
from r. Sarthe (France) and 2 strains from Lake Ritsa 
(Abkhazia) (Fig. 3). Clade 2 is formed by the sequences 
of 5 strains isolated from three basins of Lake Baikal 
as well as 1 strain from r. Erdre (France). In clade 
3, it is formed by the cox1 sequences of two strains 
from Lake Matano (Indonesia) (Fig. 3). Clade 1 is the 
most numerous and contains sequences from different 
geographic localities. 

The separation of Indonesian strains into an 
individual genotype may be caused by the fact that 
the strains were isolated from Lake Matana, which 
is located in the south-east of the central part of the 
island of Sulawesi. The island is located in the Wallacea 
region, which in biogeographic terms is a transitional 
zone between the Sundaland (in Prehistoric times it 
was connected with continental Southeast Asia) and 
the Sahul (in the past it formed a single continent 
with Australia) regions (New, 2002). The reason for 
the divergence may also be related to the fact that the 
isolated and relatively small island population without 
connection with the continent had more chances to 
accumulate differences in the cox1 gene.

The p-distance between clade 1 and clade 2 is 
0.011-0.018, and between clade 1 and 3 is 0.056-0.064. 
Between clade 2 and clade 3 p-distance is 0.06. Thus, the 
number of substitutions between clade 1 and clade 2 for 
the cox1 gene is more than three times lower than with 
clade 3. This may indicate that the level of divergence 
of strains selected in Lake Matano (Indonesia) is higher 
than in the strains selected from other places. It should 
be noted that the p-distance cox1 between species of 
Pseudo-nitzschia fukuyoi and Pseudo-nitzschia plurisecta 
is 0.06 (Lim et al., 2018) that is comparable to our data 
for clade 3. However, according to results of mating 
experiments, all the investigated populations of U. acus 
turned to be sexually compatible (Supplementary Table 
S2). 

Phylogenetic analysis of the fragments gene cox1 
of strains U. acus isolated from a sample in Lake Baikal, 
3 km from Baikalskoe settlement (Russia) showed that 
strains 3B357, 3B355 belong to clade 1, while strain 
3B327 belongs to clade 2 (Fig. 3 and Supplementary 
Table S1). We observe a similar result for strains 
isolated from r. Erdre, Nantes, (France), where strains 
0.0224-OD and 0.0304-YE are in clade 1, and strain 
0.0218-OB is in clade 2 (Fig. 3 and Supplementary 
Table S1). Thus, we mark that different genotypes can 
be present simultaneously in one population of U. acus. 
Data on the heterogeneity of the U. acus population 

Fig.3. Maximum likelihood phylogenetic tree of cox1 using model GTR with gamma-distributed rate variation across sites 
(MEGA6.0). The sequences obtained in this work are marked with circles of different color: blue – Russia, Lake Baikal; black – 
Abkhazia, Lake Ritsa; dark blue – France, Le Mans, r. Sarthe; yellow– France, Nantes, r. Erdre; red – Indonesia, Lake Matano. 
Red stars mark clones belonging to two different clades isolated from the same sample France, Nantes, r. Erdre. Black stars mark 
strains belonging to two different clades isolated from the same sample in Russia, Lake Baikal.
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are consistent with previously received resulting 
for other diatom species using cox1, ITS1-5,8S-ITS2 
and microsatellites (Rynearson and Armbrust, 2004; 
Casteleyn et al., 2009; Evans et al., 2009;  Härnström 
et al., 2011; MacGillivary and Kaczmarska, 2011; 
Kaczmarska et al., 2014; Tesson et al., 2014; Chen and 
Rynearson, 2016; Godhe and Rynearson, 2017; Wolf et 
al., 2021).  Previously noted that using metabarcoding 
of the fragment gene rbcL in samples taken from Europe 
water bodies did not show genetic diversity in species 
of the genus Ulnaria and Fragillaria depending on 
the geographical location (Kahlert et al., 2022). The 
cox1 gene fragment was used to indicate that U. acus 
populations are genetically heterogeneous, and the 
rbcL gene fragment contains an insufficient number of 
informative sites. At the same time, we must emphasize 
that these genetic differences do not necessarily suggest 
reproductive isolation. On the contrarily, following 
biological species concept (Amato, 2010), it should be 
recognized that all the investigated populations, wide-
spread on the Eurasian continent, belong to the same 
species U. acus.

In 2008, during the blooming of Thalassiosira 
gravida in the North Atlantic, 165 monoclonal cultures 
were isolated. Using microsatellite markers, 160 of 
them were found to be of different genotypes. A high 
level of genetic diversity was observed throughout the 
bloom and all taken samples coexisted simultaneously 
in the same location (Chen and Rynearson, 2016). In 
the study, the authors using allele-specific quantitative 
PCR on a mixed culture of Thalassiosira hyalina 
consisting of six different genotypes showed that when 
temperature and pCO2 change, the ratio of these 
genotypes also changes. Thus, the authors conclude that 
the genetic composition of a population may change as 
a result of intraspecific selection during adaptation to 
environmental changes (Wolf et al., 2019).

4. Conclusions

The intraspecific variability of diatoms plays 
an important role in the response of species to 
environmental changes (light, salinity, temperature, 
nutrients). At present, the intraspecific variability of 
U. acus has not been sufficiently studied. Our study 
has shown that analysis of the cox1 marker gene can 
separate U. acus into individual genotypes. It has been 
observed that the strains isolated from one point can 
belong to two separate clades, and this indicates the 
heterogeneity of the U. acus population in one habitat. 
Probably, the further use of a more variable genetic 
marker, such as microsatellites, or an increase in the 
sample size, will reveal more genotypes in the U. acus 
population. Further studies to identify the correlation 
between various U. acus genotypes and environmental 
parameters will allow us to approach the answer to 
question of how the abundance of this species changes 
during its blooming period.
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