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1. Introduction 

One of the modern microbiology and ecology 
relevant areas is the investigation of individual species 
or entire communities capable to function in “extreme” 
environments under conditions far from the “standard” 
temperature 4°C to 40°C, pH in the range 5–8.5 and 
water salinity of over 37 g kg-1 (Kristjánsson and 
Hreggvidsson, 1995; Bartlett and Bidle, 1999; Mouser 
et al., 2016). These environments include bottom 
sediments of marine and freshwater bodies that are 
the Earth’s largest organic carbon reservoir and unique 
ecological niches rich in uncultivated, just discovered 
or poorly studied yet microorganisms (Hedges and 
Keil, 1995; Tranvik et al., 2009; Teske at al., 2013). 
Investigation of composition, structure and metabolic 
capabilities of microbial communities inhabiting bottom 
sediments with different physicochemical conditions is 
an essential step towards understanding the biochemical 

processes and the biosphere evolution mechanisms 
(Frank et al., 2016; Hug et al., 2016; Drake et al., 2017; 
Kadnikov et al., 2017; Jones et al., 2018). The specific 
characteristics of deep bottom sediments as the habitat 
of microbial communities are: a lack of oxygen, low 
temperatures, high hydrostatic pressure, a deficiency of 
electron donors and acceptors as well as a shortage in 
easily accessible organic carbon sources due to active 
destruction of organic matter in the water column and 
surface sediment layer (Parkes et al., 2014). Recent 
studies have shown that these extreme conditions lead 
to a rapid decrease in number of microorganisms with 
sediment depth (Kallmeyer et al., 2012). However, 
in the areas with geological anomalies where bottom 
sediments have high concentrations of organic matter 
and/or inorganic electron donors and acceptors the 
density and activity of microbial populations are much 
higher (Parkes et al., 2014). These anomalies include 
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fields of hydrothermal sources, discharge zones of oil- 
and gas-saturated fluids, mud volcanoes, gas-hydrate 
deposits, buried layers of sapropels, etc. (Parkes et al., 
2000; Bonch-Osmolovskaya et al., 2003; Horsfield et 
al., 2006; Bennett et al., 2013; Anderson et al., 2014; 
Ruff et al., 2015). In these areas, additional sources of 
carbon and energy are available with gases and fluids 
inflow from the basalt layer of the Earth’s crust or as 
products of buried organic matter thermal activation 
and degradation in the deep sediment layers (Cowen 
et al., 2003; Parkes et al., 2005; Horsfield et al., 2006; 
Parkes et al., 2007; Engelen et al., 2008; Boetius and 
Wenzhöfer, 2013). In addition to nutrition for growth, 
ascending fluid flows can carry representatives of deep 
thermophilic microbial communities to the surface 
layers of bottom sediments (Hubert et al., 2009). 
Metabolic capabilities of these microorganisms, as well 
as their role in biogeochemical cycles, are currently the 
objects of intensive research (Orcutt et al., 2011; Biddle 
et al., 2012; Edwards et al., 2012; Parkes et al., 2014). 

Baikal, the world’s deepest lake 25−30 million 
years old, is one of the promising sites for studying 
microbial communities associated with geological 
anomalies (Biddle et al., 2012). Location of Baikal in 
the tectonically active zone contributes to the formation 
of underwater mud volcanoes, methane seeps and 
gas-hydrate deposits in the lake (Kuzmin et al., 1998; 
Kontorovich et al., 2007; Khlystov et al., 2013). In some 
areas, oil and gas migrate to the surface of the sediment 
layer from depths of approximately 7 km (Khlystov et 
al., 2007; Kontorovich et al., 2007) with abnormally 
high concentrations of some ions in pore waters as well 
as thermogenic methane and ethane (Kalmychkov et 
al., 2006; Granina, 2008; Kalmychkov et al., 2017). 

To better understand the life of prokaryotes in the 
deep biosphere, the characteristics of the environment 
that microorganisms inhabit are registered and 
reproduced during the cultivation carried out in the 
special installations. For ex situ studies of microbial 
communities from deep bottom sediments of Lake 
Baikal, researchers from Nikolaev Institute of Inorganic 
Chemistry SB RAS have developed and assembled 
special autoclaves with automatic temperature control 
allowing to reproduce conditions typical for tectonically 
active zone of Lake Baikal.

2. Materials and methods

Bottom sediment samples from Lake Baikal 
were cultivated in special autoclaves (Fig. 1). A set of 
autoclaves and furnaces was designed to perform long-
term experiments on the cultivation of microorganisms 
under conditions of protocatagenesis, i.e. at pressures 
up to 20 MPa and temperatures up to +150 ºС (Fig. 1, 
Fig. 2).  

Sample (1) was placed into a glass beaker usually 
50 mm in internal diameter and 70 mm in height with 
a Teflon lid (2). For free gas income and release conical 
cuts were made in the upper part of the jar. These cuts 
were covered from the outside with lid protrusion, 
reliably protecting sample from the ingress of any 

Fig.1. Scheme of an autoclave with a loaded sample

solid particles. A beaker with a sample was placed in 
the autoclave body (3). To prevent water evaporation 
from the sample during the experiment by producing 
saturated water vapour conditions, 10–5 ml of water 
sampled from Lake Baikal were poured between the 
outer walls of the beaker and the autoclave body. 
The autoclave body (3) is made of hardened 40 × 13 
steel. It was shaped as a thick-walled cylindrical jar 
with the external М80 × 2 thread in the upper part. 
The autoclave internal space was comprised of two 
cylindrical parts. An obturator (4) with a Bourdon tube 
pressure gauge (6) connected with membrane separator 
(5) as well as shutoff valve (7) was inserted into the 
upper part of the body. This part polished cylindrical 
surface was used for sealing. The lower cylindrical part 
58 mm in diameter and 90 mm in height provided a 
utility volume of the autoclave. The lower part of the 
autoclave had two notches (8) to fix it tight in a bench 
during assembly and disassembly of the appartatus. The 
obturator (4) was made of 40 ×13 steel as depicted in 
Fig. 1. Obturator had two sockets to accommodate a 
membrane separator (5) and a shutoff needle valve (7). 
A Bourdon tube pressure gauge (6) was screwed into the 
membrane separator (5). A membrane separator was 
installed to prevent water condensation in the internal 
volume of the pressure gauge (6). In our experiments 
we used RMM membrane separators and pressure 
gauges manufactured by YuMAS R&D production 
facility and shutoff valves manufactured by the SB RAS 
Experimental Plant (Novosibirsk) with a capacity of up 
to 40 MPa. All the structural elements of these units that 
faced internal workspace were made of stainless steel 
(12 × 18Н10Т, Russian analogue of steel 321), seals 
were made of Teflon. The socket for attaching the RMM 
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membrane separator had a М20 ×1.5 thread; Teflon 
seal (9) was located in the upper part of the socket and 
was oppressed by the cylindrical part of the membrane 
separator. The socket for shutoff valve attachment had 
a М12 ×1.5 thread, and it’s design was the same as 
of the socket for pressure gauges attachment with an 
appropriate fitting. The connection of the obturator (4) 
to the valve (7) was also tightened by a Teflon gasket 
(10). The outer part of the obturator (4) had a shape of 
an inverted mushroom. The “cap” of the mushroom was 
hooked on the protrusion (3) in the body channel; the 
part adjacent to the “cap” was polished. A cylindrical 
“stem” of the mushroom served for sealing. A five mm 
wide and 5-6 mm high silicone rubber ring (11) on 
the “stem” was used for sealing. The rubber ring was 
opressed by a bushing held tightened by enforced screw 
(11) matching the external М80 × 2 thread of the 
body (3). This screw was in fact a load-bearing element 
that fixed obturator (4) in the body (3). To reduce the 
probability of jamming the large diameter thread, the 
screw (13) was made of CuAl10Fe1 bronze. Obturator 
(4) and bushings (12) surfaces adjacent to the rubber 
ring were bevelled by 10° for better oppressing of the 
rubber. During the screw (13) tightening, the rubber 
ring is being squashed and flatten against the polished 
surfaces of the body (3) and obturator (4), resulting 
in primary compression in the autoclave internal 
volume. While the pressure builds inside the autoclave 
the squashing force applied to the rubber ring (11) is 
growing as well as the flattening of the rubber against 
the polished surfaces, i.e. the construction is presumably 
self-sealing. To reduce the rubber flowing into the gaps 
between the bushing (12), body (3) and obturator (4), 
a two mm thick tightly fitted to the polished surfaces of 
the body and obturator Teflon ring was designed to be 
inserted between the rubber ring (11) and bushing (12) 
(not shown in Fig. 1). The described autoclave proved 
to be able to withstand pressures of up to 20 MPa and 
temperatures of up to 150°С for a long time. 

Furnaces shown in Fig. 2 were used for long-
term heating of autoclaves. The main block of the 
construction (14) was made of aluminium alloy and 
had a socket to insert the assembled autoclave into. 
To improve heat transfer, the autoclave body (3) was 
inserted into block socket (14) with a gap of 0.2−0.3 
mm, while the gap between the screw (13) and the 
block walls had to be at least 1 mm. The cover (15) and 
the bottom of the furnace (16) were made of textolite. 
They clamp together the main block (14) and the whole 
construction was assembled by a shell (17). The space 
between the shell (17) and the block (14) was filled by 
mineral wool (18) for thermal insulation. To reduce the 
heat transfer between the block (14) and parts (15) and 
(16), the contact surface between them had 4 mm wide 
circular grooves.

Four channels were drilled in the block (only 
one is shown). Three channels contained cartridge 
heaters 100 W of power each, and the fourth channel 
contains a copper resistance thermometer sensor (50 
Ohms) (19). Power cables and wires from the sensor 
were placed in an annular groove (20) in the upper part 
of the block (14) and were brought out through the 

textolite cover (15). The wires from the temperature 
sensor were shielded. The autoclave was covered with 
a compound textolite cover (21) for an additional 
thermal insulation. The Termodat 10K4 temperature 
controller with thyristor power units (manufactured by 
Scientific and Production Enterprise Sistemy Kontrolya 
LLC) (22) controlled the furnace. Since a long-term (a 
year or more) continuous operation of the furnace was 
envisaged in the absence of continuous supervision, 
the additional safety measures were taken. The power 
of heaters (19) and the method of their connection 
(sequential) were selected in such a way that even in 
the event of a temperature controller failure and an 
unregulated voltage of 220 V application to heaters 
the temperature in the furnace would not rise above 
110–120°С.

The standard experiment conducting procedure 
for the installation included loading of the sample 
into the autoclave, assembling the autoclave, flushing 
working fluid, setting the required working fluid 
pressure, heating the autoclave to the set designated 
temperature, and adjusting the pressure (if necessary). 
The working fluid was flushed by repetition of filling 
the autoclave with gas (~1 MPa) and discharging gas 
into the atmosphere. Depending on the permissible 
residual amount of air in the autoclave, the flushing is 
carried out three to six times. 

Biomass of diatom Synedra acus, which is among 
the dominant species of phytoplankton in Lake Baikal 
(Grachev et al., 1998), was added as a complementary 
organic matter to the samples of bottom sediments 
from Lake Baikal taken for the experiments (methane 
seeps Goloustnoye and Posolsk Bank as well as mud 
volcano Khoboy). Department of Cell Ultrastructure 
at Limnological Institute SB RAS provided the axenic 
culture of this diatom (Shishlyannikov et al., 2011). 
The composition and distribution of hydrocarbons 
from the maltene part in the preliminarily obtained 
chloroform extract from samples of bottom sediments 

Fig.2. A heating furnace with the autoclave inside it. See 
text for the explanations
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before (including the additionally introduced organic 
substrates) and at the end of the experiment were 
analysed by chromatography-mass spectrometry 
method according to (Kashirtsev et al., 2001).

To access changes in the structure and 
composition of microbial communities from samples of 
original sediments and sediments after cultivation, total 
DNA were extracted by enzymatic lysis followed by 
phenol-chloroform extraction (Sambrook et al., 1989). 
Loci subject to analysis were amplified by polymerase 
chain reaction (PCR) and subsequently used for massive 
parallel sequencing libraries preparation and analysis 
on Illumina MiSeq platform (SB RAS Genomics Core 
Facility, Novosibirsk). Massive parallel sequencing and 
phylogenetic analysis were performed as described 
previously (Bukin et al., 2016).

3. Results and discussion

We used autoclaves in several model experiments 
on cultivation of natural microbial communities 
from bottom sediments of Lake Baikal with different 
geochemical conditions: methane seeps Goloustnoye 
and Posolsk Bank as well as mud volcano Khoboy, 
which feature different temperatures, pressures 
and carbon and energy sources. We have shown the 
ability of some taxa from Lake Baikal deep bottom 
sediment layers to survive under conditions typical 
for protocatagenesis, as well as in typical involvement 
known for these taxa in organic matter transformation 
locations. The metagenomic analysis of DNA samples 
before and after the experiments allowed us to 
characterize the dominant and minor components of 
microbial communities and identify the putative main 
participants in the observed processes inhabiting deep 
bottom sediments of Lake Baikal (Bukin et al., 2016; 
Pavlova et al., 2016; Pavlova et al., 2019a). We have 
noticed that different geochemical conditions of bottom 
sediments associated with hydrocarbon discharge 
determine different compositions of microbial 
communities and, hence, the transformation degree 
of organic matter as well as spectrum of compounds 
resulting from the destruction of organic matter under 
thermobaric conditions. Samples of mud volcano 
after cultivation were dominated by representatives 
of thermophilic taxa (Deinococcus-Thermus, Firmicutes, 
etc.), which could be transferred to the surface 
sediments with gas-saturated material from depths of 
several kilometres (Pavlova et al., 2019a). In cultivated 
samples of bottom sediments from methane seeps 
characterized by presence of a fluid convection loop 
we detected typical mesophilic inhabitants of bottom 
sediments with a “flexible” metabolism (Bukin et al., 
2016; Pavlova et al., 2016). This composition probably 
allows adapting to the changes in environmental 
conditions during the burial of individual bottom 
sediment layers and the circulation of fluid flows. The 
lack of changes in composition of organic matter, as well 
as in cells of microorganisms and 16S rRNA sequences 
of the Bacteria and Archaea members in control (sterile) 
sediment samples confirmed the destruction of organic 

matter under experimental conditions to be attributed 
to the activity of microorganisms.

The experiments have shown that long-term 
cultivation of microbial communities from bottom 
sediments of methane seeps Goloustnoye and Posolsk 
Bank, which were enriched with detritus of the Baikal 
diatom Synedra acus and CH4:H2:CO2 gas mixture, leads 
to the destruction of algal biomass and formation of 
petroleum biomarkers, such as retene or gammacerene 
(Bukin et al., 2016; Pavlova et al., 2016). These data 
indicate the involvement of microorganisms in the 
formation of retene during the destruction of diatoms 
under milder than pyrolysis conditions. Previously 
the involvement of anaerobic microorganisms in the 
formation of retene was suggested (Martin et al., 1999), 
but there was no experimental evidence. Considering 
that retene is used as a biomarker of conifers for the 
interpretation of the recent past geochemical changes, 
the obtained data could be applied for more correct 
interpretations of a more distant past geochemical 
processes.

The recorded changes in organic matter 
composition for bottom sediments of mud volcano 
Khoboy sample were not as significant (16%) as changes 
registered for methane seep Posolsk Bank bottom 
sediments sample (41%) (Bukin et al., 2016). However, 
even after small cultivation time (seven months) 
sediment sample from the mud volcano Khoboy displayed 
a decrease in concentration of phenanthrenes relative 
to methyl-substituted homologues, including retene, 
and an increase in concentration of dibenzothiophenes 
relative to normal alkanes. We identified also tri- and 
monoaromatic steroids, including 17-dismethyl-23-
methylmonoaromatic steroids С27 (Pavlova et al., 
2019a). An increase in concentrations of tri- and 
monoaromatic steroids in autoclaved sediments may 
indicate that biomass of Baikal diatom S. acus was in fact 
destructed, which led to an increase in concentration 
of steroids known to be produced by diatoms and 
associated with them (Volkman, 1986; Ponomarenko et 
al., 2004; Kodner et al., 2008; Kalinovsky et al., 2010). 
The dominance of the S isomers over R isomers in 
homohopanes, as well as the presence of biohopanes in 
trace concentrations, also indicate an increased organic 
matter transformation level after cultivation. 

In the process of microbial communities from 
Lake Baikal fault zones cultivation, we have isolated 
several pure cultures of thermophilic bacteria with 
unusual for their species metabolism. Unlike cold marine 
sediments where endospores of thermophiles belong to 
obligate anaerobes, mantaining their metabolism via 
fermentation of organic substrates or sulphate reduction 
(Hubert et al., 2010; Müller et al., 2014; Chakraborty et 
al., 2018), in Baikal sediments associated with seepages 
of gas-saturated fluids we found facultatively anaerobic 
thermophilic prokaryotes of the genera Paracoccus, 
Geobacillus and Thermaerobacter (Pavlova et al., 2016; 
Khanaeva et al., 2017; Pavlova et al., 2019b). Genomic 
studies confirmed the potential of Thermaerobacter 
PB12/4term pure culture for mixotrophic type of 
nutrition, which is uncharacteristic for the members of 
genus Thermaerobacter as obligate aerobes (Baturina et 
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al., 2018). The Thermaerobacter PB12/4term contains 
genes that encode [NiFe]hydrogenase, formate 
dehydrogenase, enzymes catalysing assimilatory nitrate 
and sulphate reduction, as well as an incomplete set of 
the denitrification enzymes, by which microorganism 
can sequentially reduce nitrate to nitrogen dioxide. The 
final pure cultures attributed to the genera Geobacillus 
and Thermaerobacter were deposited in All-Russian 
Collection of Microorganisms (VKM B-3150; VKM 
B-3151).

The presence of thermophiles in the surface Lake 
Baikal psychrophilic sediments is consistent with the 
data (Klerkx et al., 2003) on the role of gas-saturated 
fluids, which bring from deep sediment layers to 
the surface layers not only diatoms but also viable 
microorganisms that can develop and function at a 
temperature of +70°С or more.

Conclusions

Unique characteristics of Lake Baikal open for 
researchers new perspectives into the not yet fully 
explored world of the deep biosphere. Our study 
has demonstrated that the developed experimental 
equipment is a simple and effective tool to recreate the 
deep biosphere conditions in model experiments. Using 
this equipment we have shown that thermophiles from 
the deep biosphere enter the surface sediments together 
with gas-saturated fluids and mud-volcanic breccia. 
The thermobaric experiments have indicated that 
hydrocarbon molecular markers (n-alkanes, isoprenoids, 
terpanes, and polycyclic aromatic hydrocarbons) 
presence in the bottom sediments (Morgunova et al., 
2018) can be a result of organic matter transformation 
with the participation of thermophilic microbial 
communities. The presence of microorganisms with an 
unusual type of metabolism suggests that these studies 
will be in demand for a long time both for Lake Baikal 
and worldwide.
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