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1. Introduction

Sponges (Porifera) are the earliest multicellular 
animals and important component of marine and 
freshwater ecosystems (Diaz and Rützler, 2001; Bell, 
2008; Van Soest et al., 2012; Webster et al., 2013). 
Sponges show remarkable ecological adaptability and 
they were able to inhabit all aquatic ecosystems of the 
Earth. 

Sponges are ideal bioindicators of the 
environmental state, due to their simple body 
structure, species richness, filter-feeding life style and 
widespread abundance. Sponges pump large quantities 
of water and have ability to concentrate a wide range 
of chemicals from both the suspended and dissolved 
phases of the water (Orani et al., 2018). Additionally, 
sponges are highly tolerant of some pollutants and have 
detoxification systems, making them suitable model 
organisms for monitoring studies (Orani et al., 2018). 

For all monitoring programs, it is important to 
identify monitoring parameters and to determine the 
most appropriate indicators. In particular, for sponge 
monitoring a focus on specific sponge populations with 
estimates of abundance and taxonomic composition 
at regular intervals should be a important part of the 
program (Bell et al., 2017). Sponge tissue can be sampled 
periodically for microbial community composition, 
metabolite production and stress protein expression, 
which will provide a large amount of data. The studies 
of the influence of changes in environmental conditions 

on these parameters are limited, although sponges have 
shown to be very sensitive to changes in surrounding 
conditions (López-Legentil et al., 2008; Pantile and 
Webster, 2011). 

For marine sponges, stress response studies 
were conducted in the field of microbial composition, 
gene expression and transcriptome techniques. The 
understanding of molecular mechanisms of the sponge 
stress response is poor, since most studies focus on 
the effect of stress on the sponge-associated microbial 
community (Selvin et al., 2009; 2010; Kiran et al., 
2018). However, the microbial composition has a large 
intraspecific and interspecific variability, as well as 
varies by depth and season (Selvin et al., 2009). 

Changes in the gene expression patterns of stress 
proteins can serve  as a biomarker to assess levels of 
acute stress and determine the environmental load 
on a sponge (Bell et al., 2017). Heat shock proteins 
(Hsps) play an important role in maintaining protein 
homeostasis during adaptation of organisms to variable 
environmental conditions (Parsell and Lindquist, 1993; 
Feder and Hofmann, 1999; Tomanek, 2010). Previous 
studies demonstrated enhanced transcription of HSP70 
in marine sponges undergoing temperature stress, 
osmotic shock, pH stress, heavy metals and phenols 
stress (Schröder et al., 2006; López-Legentil et al., 
2008; Webster et al., 2013). 

The studies on the stress response of freshwater 
sponges are rare. HSP70 expression was first shown 
in the freshwater sponge Ephydatia fluviatilis (Müller 
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et al., 1995). In thermally stressed Spongilla lacustris 
HSP70 level patterns resemble those of gene expression 
patterns and exhibit an even greater intensity and 
sensitivity (Schill et al., 2006). In gemmules (resting 
bodies that contain totipotent cells) of the freshwater 
sponge S. lacustris, increased levels of cellular HSP70 
and hsp70 mRNA likely allow the gemmules to 
stabilize their proteins and membranes when the water 
temperature changes (Schill et al., 2006). Increased 
HSP70 level was detected in the Lake Baikal sponges 
Lubomirskia abietina and Baikalospongia intermedia after 
exposure at the elevated temperature of 20°C, waste 
water from the Baikal Pulp and Paper Mill, lead and 
zinc, while copper had no effect (Efremova et al., 2002; 
Schröder et al., 2006).

Lake Baikal is the oldest and deepest lake in 
the world. Its age is estimated at 35 million years, 
and its maximum depth has been recorded at 1,647 
meters. Endemic species in the lake evolved into 
species flocks and form special mechanisms for 
adaptation. The Lake Baikal endemic sponge of the 
family Lubomirskiidae constitutes the bulk of benthic 
biomass and includes thirteen described species and 
two subspecies (Efremova, 2001; 2004; Itskovich et al., 
2017). Lubomirskia baicalensis inhabits depths of 3-120 
meters and dominates the littoral zone of the lake 
(Masuda, 2009). We analyzed the effect of increasing 
temperatures on the dynamics of the HSP70 level in 
Baikal endemic sponge Lubomirskia baicalensis to 
evaluate this marker as a possible bioindicator.

2. Materials and methods

Samples of L. baicalensis were collected by SCUBA 
diving in August 2013 in the Southern basin of Lake 
Baikal near the Bol’shye Koty settlement at a depth 
of 10 m. Immediately after transfer to the laboratory, 
sponge specimens (n=3) were placed into an aquarium 
with Baikal water and were kept at 4°C with 12h/12h 
light-dark cycles and aeration for 14 days to achieve  
acclimatization (Fig. 1). One part (5 cm lengths) of 
each sponge was cultivated in a 6 L aquarium at 9°C 
and 13°C with daily water exchange. The controls were 
continuously kept at 4 °C for one month. Temperatures 
of 9°C and 13°C were chosen according to data on the 
variation of the fatty acid composition of total lipids 
in L. baicalensis during aquarium cultivation at these 
temperatures (Glyzina and Glyzin, 2014). Incubation 
times were 2 h, 15 h and 7 days. Subsequently, small 
parts (in triplicate samples) of each sponge were frozen 
in liquid nitrogen.

Total protein was extracted from three replicates 
of each sample frozen in liquid nitrogen immediately 
after the temperature treatment. Protein from the L. 
baicalensis sponge was extracted as described previously 
(Voinikov et al., 1986). Protein concentration in the 
samples was  determined with Quant-iT™ Protein 
Assay Kit (Thermo Fisher Scientific). 30 μg of protein 
from  each sample were separated by electrophoresis 
in 12% SDS-PAGE (Laemmli, 1970) then the protein 
was transferred onto a nitrocellulose membrane in a 

Fig. 1. Endemic Baikal sponge Lubomirskia baicalensis 
(Pallas, 1773)

Fig. 2. The relative HSP70 levels in L. baicalensis exposed 
to thermal stress at 9 °C and 13 °C for 2 hours, 15 hours and 
7 days. The HSP70 level of sponge kept at 4 °C for 2 hours 
was estimated as 100%. Means ± SD.  Asterisks indicate 
significant difference (p<0.05) from the control

mini–Protean III (Bio–Rad, USA) system following the 
manufacturers protocol. 

HSP70 was detected with antibodies, as 
described previously (Timmons and Dunbar, 1990). 
Primary antibodies against HSP70 were used (Cat. No 
H5147 «Sigma», USA). The antibodies were visualized 
with secondary antibodies conjugated with alkaline 
phosphatase («Sigma», USA). The intensity of spot 
coloring was determined with Gel Analysis software 
and expressed as percentage of intensity to the spot 
coloring of the protein in the control (=100%, left bar 
in figures) as previously described (Itskovich et al., 
2018). 

Statistical analysis included mean ± SD, 
normality test (Shapiro–Wilk), and one-way analysis 
of variance (ANOVA) with SigmaPlot (V12.0, SysStat 
Software Inc., Ca, USA). Statistical significance was 
tested by the Fisher LSD method.
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3. Results and discussion 

To study the effect of elevated temperatures on 
the dynamics of HSP70 accumulation in the Baikal 
endemic sponge L. baicalensis we used two elevated 
temperature. Constitutive synthesis of HSP70 was 
detected in samples immediately after sampling. After 
acclimatization and further keeping in the aquarium 
during 1 month at 4 °C we did not detect increased 
Hsp70 levels, which indicate appropriate cultivation 
conditions.

We have determined that after the temperature 
rise from 4°C to 9°C the HSP70 level increased in 2 
hours to 110% compared to the control, and in 15 
hours it further increased to 130% (Fig. 2). However, 
when the temperature rose to 13°C, the HSP70 level 
decreased in 2 hours to 80% and in 15 hours − to 
40% in comparison with the control. After 7 days of 
incubation at 9°C the HSP70 level increased to 150% 
compared to the control (Fig. 2). Thus, the rising 
temperature to 9°C increased the HSP70 level in L. 
baicalensis, but the temperature rise to 13°C reduced 
the HSP70 , indicating the inhibition of metabolism.

Our experimental data have shown that the 
Baikal sponges respond to a rise in temperature 
by changing the content of HSP70. The detected 
temperature optimum of L. baicalensis associated with 
the environmental conditions of its natural habitat. L. 
baicalensis is a littoral species inhabiting the depths of 
3-120 m (Efremova, 2001; Masuda, 2009). The water 
temperature in the lake at a depth below 250 m is a 
constant 3.3 - 4.3°C, but during warming up periods in 
summer it can reach 12-13 °C in some places at 10 m 
depth (Shimaraev et al., 1994; Timoshkin et al., 2009). 
In bays and the Maloye More Strait (Central Baikal) 
temperature fluctuations are most significant, from 0.1 
to 25°C (Kozhova and Izmest’eva, 1998).

Along with the experimental data, the 
development of bioindicators and assessment of the 
state of the lake ecosystem requires research in natural 
conditions. The study of the stress response of the 
Baikal sponges is relevant in connection with a mass 
sponge bleaching event which has been detected 
recently (Kaluzhnaya and Itskovich, 2015; Timoshkin 
et al., 2016; Itskovich et al., 2018; Khanaev et al., 2018; 
Kulakova et al., 2018). In situ sponge surveys should be 
performed  to estimate HSP70 level and gene expression 
and these data can be used to assess the health status 
of sponges in Baikal. In marine sponge Xestospongia 
muta, two types of bleaching have been described: 
cyclic bleaching, from which sponges can recover, 
and fatal bleaching, which usually results in sponge 
death (López-Legentil et al., 2008). Unlike cyclically 
bleached tissues, fatally bleached samples had higher 
hsp70 gene expression. At the same time both cyclic 
and fatally bleached tissues had lower chlorophyll a 
concentrations than unbleached tissue. Therefore hsp70 
expression was a better indicator between fatal and 
cyclical bleaching, compared to chlorophyll a content 
(López-Legentil et al., 2008). Our preliminary study 
revealed the decreased HSP70 level of in L. baicalensis 
both in the case of bleaching after exposure to 13 °C, 

and in diseased individuals from Lake Baikal (Itskovich 
et al., 2018). At present, little is known about the 
HSP70 production in response to chronic stress, since 
most studies deal with acute stress of Porifera (Bell et 
al., 2017). Mass sponge disease in Lake Baikal indicates 
that sponges are subject to chronic stress in the lake. 
Longer observations of the HSP content and gene 
expression in diseased and healthy sponges from Lake 
Baikal can provide information about their ability to 
recover.

The complete information about changes in 
gene expression can be obtained by transcriptome-
wide survey. Study of gene expression dynamics 
in the shallow-water sponge Haliclona tubifera by 
high-throughput transcriptome sequencing revealed 
activation of various processes that interact to maintain 
cellular homeostasis during stress response to elevated 
temperature (Guzman and Conaco, 2016). Heat shock 
proteins, antioxidants, and genes involved in signal 
transduction and innate immunity pathways were 
upregulated after short-term thermal stress whereas 
prolonged exposure resulted in higher expression of 
genes involved in cellular damage repair, apoptosis, 
signaling and transcription (Guzman and Conaco, 
2016). While in L. baicalensis HSP70 level was 
decreased at sublethal temperature, in H. tubifera the 
relative expression of Hsp70 was strongly upregulated 
during exposure to sublethal temperature (Guzman and 
Conaco, 2016). This may indicate that L. baicalensis has 
greater sensitivity to thermal stress then H. tubifera due 
to living in more stable conditions. These results may 
also indicate differences in gene expression and protein 
content of HSP70 due to posttranscriptional regulation. 
Combining transcriptome data with those on protein 
content would provide important information about 
the stress response of sponges. Transcriptomic studies 
of the endemic Baikal sponges are in progress. 

4. Conclusion

HSP70 is a molecular indicator which can 
provide early identification of environmental stress on 
aquatic communities. Our data have shown that the 
changes in HSP70 content accurately reflect the stress 
response to elevated temperature in L. baicalensis and, 
therefore, is indicative and can serve as an early marker 
of environmental stress. The in situ studying of chronic 
stress by evaluating gene expression and protein 
content would contribute to a better understanding of 
the potential mechanisms of adaptation, resilience and 
conservation of sponges.
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