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1. Introduction

Diatoms are unicellular microalgae with a 
silica shell, often dominating in the composition of 
phytoplankton in water bodies (Round et al., 1990; 
Armbrust 2009). They play an important ecological 
role, providing up to 40% of the primary productivity 
of the marine environment (Sarhou et al., 2005). 
These microalgae are distinguished both huge 
morphological diversity and its ability to survive 
in various environments. Diatoms often dominate 
in abundance and biomass in freshwater and in the 
marine environment, and also live in various extreme 
conditions – in a wide range of salinity (Ayache et al., 
2020), extreme cold water (Popovskaya, 2000) and 
thermal springs (Delgado et al., 2020). Living in the 
aquatic environment, diatoms encounter with various 
environmental changes, to which they need to adapt 
by changing their metabolism. The key factor to adapt 
to different conditions is a flexible metabolism that 
provides a sufficient response to stressful conditions 
(Fig. 1).

This review considers response mechanisms of 
diatoms on various environmental influences, including 
abiotic (changes in lighting, temperature, lack of 
essential nutrients) and biotic factors (interactions with 
other diatoms, bacteria and viruses). Special attention 
is paid to the molecular mechanisms and cellular 
manifestations of the reaction to these factors, and 
evidence of programmed cell death in diatoms and the 

activation of its members (in particular, metacaspases 
and death specific protein) are considered.

2. Effects of nutrient deficiency on diatoms

The presence of nutrients in the environment is 
the most common factor that can limit the development 
of a diatom population in nature. Diatoms require 
macro-, micronutrients, and vitamins (B1, B7, and B12) 
to grow (Orefice et al., 2019). Most of the research 
is related to the availability of silicon, nitrogen, iron 
and phosphorus, so they are covered in this review. 
When a necessary element is deficient, diatoms try to 
compensate for the lack of an element, for example, 
by replacing proteins that require it. However, if the 
substance is not supplied in the required amount, 
serious disorders occur, often associated with a violation 
of photosynthesis and the respiratory chain, oxidative 
stress develops and cell death processes are activated. 

Silicon
Silicon in the form of silicic acid is a key limiting 

factor in the growth of diatoms in water bodies and 
in laboratory culture, as it is necessary for the silica 
shell formation (Dugdale et al., 1995; Martin-Jézéquel 
et al., 2000; Wang et al., 2017). At high concentrations 
of silicic acid, as an uncharged molecule, it can freely 
diffuse through membranes (Thamatrakoln and 
Hildebrand, 2008). However, at low concentrations, 
silicon as silicic acid is transported into the diatom 
cell from water using silicon transporter proteins (SIT) 
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(Hildebrand et al., 1997; Durkin et al., 2016; Knight et 
al., 2016).

It has been shown that under silicon limitation 
the diatom cell cycle arrests (Vaulot et al., 1987). When 
silicon is deficient in diatoms, there are two possible 
cell cycle arrest points: the G1/S phase (Si is required 
for DNA replication) and the G2/M phase (Si is required 
for the formation of new valves) (Vaulot et al., 1987).

First of all, diatom cells adapt to the conditions 
of silicon deprivation the transport of silicon into the 
cell. As shown for Skeletonema marinoi and Thalassiosira 
pseudonana under these conditions, there is an 
increased expression of the silicon transporter gene 
SIT (Mock et al., 2008; Wang et al., 2017). Already 
on the second day of silicon deficiency, the expression 
of genes involved in antioxidant protection increases 
(Wang et al., 2017). It is suggested that ROS generation 
in silicon deficiency may occur due to disturbances 
in electron transport in the photosynthetic chain of 
chloroplasts and the respiratory chain of mitochondria 
(Thangaraj et al., 2019; Bucciarelli and Sunda, 2003) 
which may be related to various consequences of 
silicon deficiency. It has been shown that diatoms have 
extracellular carbonic anhydrase, which catalyzes the 
formation of CO2 from HCO3

- on their surface. It is 
likely that silica on the diatom cell surface is a buffer 
for carbonic anhydrase activity, and silicon restriction 
also entails CO2 restriction (Milligan and Morel, 2002). 
Transcriptome analysis during silicon starvation showed 
an increase in the expression of genes associated with 
carbon uptake, the glyoxylate cycle, light perception, 
and pigment metabolism (Sapriel et al. 2009). Also, 
with silicon deficiency, there is an increase of the 
conversion of pyruvate to acetyl-CoA, which is used 
in the Krebs cycle, or for the synthesis of fatty acids 
(Thangaraj et al., 2019). In addition, researchers note a 
link between silicic acid and iron metabolism, which is 

very important for the photosynthetic apparatus (Mock 
et al., 2008; Sapriel et al. 2009).

Metacaspase expression was shown to increase 
on the second day of silicon fasting (Wang et al., 2017). 
Metacaspases are proteases that are analogs of animal 
caspases (Klemenčič and Funk, 2018). It is known that 
in diatoms, metacaspases are often associated with cell 
death, but it is assumed that they can also participate 
in the processes of adaptation to stressful conditions 
(Wang et al., 2017, van Creveld et al., 2021, Bidle and 
Bender 2008). 

At the same time, the expression of DSP (death 
specific protein) in S. marinoi also increases on eighth 
day of silicon deprivation (Orefice et al., 2015). DSP 
is a diatom-specific protein, the expression of which, 
on the one hand, increases with cell death, and on the 
other hand, it seems to be involved in increasing the 
efficiency of photosynthesis, which is the process of 
acclimatization (Chung, 2008; Thamatrakoln, 2013).

TEM observations showed that the cells 
under low silicate conditions were characterized by 
vacuolization with intact cell membranes and swollen 
already on day 2 of silicon deficiency and he cells 
appeared empty on day 7. Staining for externalization 
of phosphatidylserine (FITC-Annexin-V) and caspase 
activity (FITC-z-VAD-FMK) was positive after nine days 
of cultivation, indicating PCD processes (Wang et al., 
2017).

Iron
It is known that presence of iron in the 

environment is critical important for marine diatom 
survival. Iron is required at relatively higher 
concentrations per cell than all other metals due to its 
ability to catalyze redox reactions, transfer electrons, 
and reversibly bind and thus transfer ligands such 
as oxygen dioxide. As for autotrophs diatoms needs 
iron for a number of metabolic processes, including 

Fig.1. Molecular and cellular changes observed under the influence of various stress factors.



Bayramova E.M. et al. / Limnology and Freshwater Biology 2023 (1): 20-30

22

photosynthesis (photosystems, ferredoxin, cytochrome 
b6f), the Krebs cycle (cofactor for aconitase, fumarase), 
and nitrate assimilation (nitrate and nitrite reductase) 
(Milligan and Harrison, 2000; Behrenfeld and Milligan, 
2013). Diatoms have several enzymes to absorb iron – 
ferric reductase dissociates from organic Fe3+ ligands, 
ferroxidase, which oxidizes Fe2+ to Fe3+, and iron 
permease, which is able to transport Fe3+ across the 
membrane (Gao et al., 2021). 

It was shown that cells under the iron deficiency 
stress use compensatory mechanisms in order to 
survive. These processes include the replacement of 
Fe-containing proteins with Fe-independent ones to 
reduce the need for Fe in cells. For example, Cyt c 
553 (iron-containing) is replaced by copper-dependent 
plastocyanin, and ferredoxin is partially replaced by 
flavodoxin (non-iron-containing) (Ferreira and Straus, 
1994; Mckay et al., 1999). In addition, in the first 
days of iron limitation, the expression of the ISIP2a 
protein (Iron Starvation Induced Protein 2a), which 
accumulates Fe3+ on the cell surface, was shown 
(Morrissey et al., 2015).

Diatoms are able to use the system of iron 
storage while centric and pennate species differ in ways 
of iron storage. It was shown that for pennate diatoms 
(Pseudo-nitzschia australis) ferritin is involved in the 
iron accumulation (Marchetti et al., 2009) and for 
centric diatom (Thalassiosira weissflogii) it was shown 
the iron accumulation in the vacuoles (Nuester et al., 
2012). Excess iron is no less harmful to cells, since it 
has a good ability to accept and donate electrons. Due 
to this reactive hydroxyl radical are formed (Graff van 
Creveld et al., 2016). It is assumed that under normal 
conditions, ferritin, or vacuoles, serve to safely store 
iron in cells.

The continuation of this stress leads to disruption 
of electron transport through photosystem II, and, as 
a consequence, the formation of high concentrations 
of reactive oxygen species (ROS) – an increase in the 
concentration of manganese-dependent superoxide 
dismutase, an antioxidant defense enzyme, has 
been shown (Peers and Price, 2004). In addition, 
the concentration of powerful antioxidants, such as 
tocopherol, is increased, as is the expression of the 
gene encoding 2-phosphoglycolate phosphatase (GPH), 
which is involved in the repair of a class of DNA damage 
caused by oxidative stress. The cytochrome level also 
decreases with iron deficiency and ROS production 
increases. At the same time, the activity and expression 
of mitochondrial alternative oxidase increases in cells, 
thereby reducing the formation of ROS (Allen et al., 
2008). 

Differential expression of T. pseudonana 
metacaspases was shown during iron starvation - some 
of them were activated in the first days of cultivation, 
and some after five days, which correlates with the 
cytological manifestations of PCD. This points to 
possible different roles of metacaspases. At the same 
time the addition of the caspase inhibitor z-VAD-FMK 
to Fe-starved cells reduced cellular caspase activity 
and increased cell survival (Bidle and Bender, 2008). 
It has been found that DSP T.pseudonana enhances 

growth during acute Fe limitation at subsaturating 
light by increasing the photosynthetic efficiency of 
carbon fixation (Thamatrakoln et al., 2013). It has 
been shown that under iron limitation most cells T. 
pseudonana lacked the most recognizable organelles by 
day 4 and appeared empty by day 6 while maintaining 
cell membrane integrity. Annexin V-FITC and FITC-z-
VAD-FMK staining demonstrates PCD processes under 
the influence of iron starvation (Bidle and Bender, 
2008; Luo et al., 2014).  

Nitrogen
Nitrogen is a constituent of proteins and nucleic 

acids. It has been shown that nitrogen starvation reduces 
the translation of proteins involved in the reduction of 
nitrate to ammonium. However, the concentration of 
enzymes involved in ammonium assimilation does not 
decrease, which means that this process is important 
under conditions of nitrogen deprivation (Hockin et al., 
2012).

For T. pseudonana and Phaeodactylum tricornutum 
it was shown that diatoms have several transport 
proteins for the absorption of inorganic (for example, 
nitrate, NO3-, ammonium, NH4+) and organic nitrogen 
(for example, urea, amino acids) (Rogato et al., 2015). 
Nitrate entering the cell is reduced to nitrite by cytosolic 
NADH-dependent nitrate reductase (Allen et al., 2005), 
then nitrite is transported to the chloroplast and reduced 
to ammonium by cyanobacterial-like ferredoxin-
dependent nitrite reductase (Hockin et al., 2012). After 
that, ammonium is assimilated by glutamate synthase 
and glutamine synthetase into amino acids and other 
nitrogenous compounds (Rogato et al., 2015).

Whole genome data (T. pseudonana) showed 
that diatoms have a complete urea cycle (Armbrust 
et al., 2004) and can also use alternative sources of 
nitrogen. Thus, an increase in the level of expression 
of the urea transporter and amino acids, as well as 
some peptidases, was shown in the presence of nitrate 
deficiency in the medium (Hockin et al., 2012). Under 
conditions of nitrogen restriction, an increase in the 
urease content, enzymes involved in the synthesis of 
ornithine was found. It is suggested that ornithine can 
serve as a reservoir for the storage of reduced nitrogen. 
In addition, acetyl aminotransferase catalyses the 
transamination of ornithine (Allen et al., 2011).

The destruction of pigment-protein complexes, a 
violation in the conversion of energy in photosystem 
II and lipid content increasing in the cell were 
shown under a nitrogen lack for the diatoms of the 
Antarctic ice (Mock and Kroon, 2002). Chlorophyll is 
a nitrogenous macromolecule, and a decrease in its 
synthesis reduces the need for cells in nitrogen, and also 
reduces the ability to capture light and the formation of 
reactive oxygen species. It has been shown that, under 
conditions of nitrogen starvation, the concentration 
of proteins involved in the synthesis of the light 
harvesting complex in T. pseudonana and P. tricornutum 
cells decreases (Hockin et al., 2012; Yang et al., 2014).

Under nitrogen starvation, markers of 
programmed cell death in diatoms have also been found 
(Berges and Falkowski, 1998; Lin et al., 2017). The 
nitrogen-limited cells S. marinoi after day 4 displayed 
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cytoplasmic vacuolization and swollen mitochondria 
when the membrane and nuclei were intact. At the same 
time an increase in the expression of metacaspases, 
DSP, as well as externalization of phosphatidylserine 
has been shown (Wang et al., 2020). 

Phosphorus
The growth of phytoplankton is also affected by 

the phosphorus content in the reservoir. Phosphorus 
is a part of nucleic acids, plays a central role in the 
energy processes of the cell, as part of ATP, as well 
as phospholipids that make up the cell membrane, and 
many enzyme cofactors (NAD, FAD). Phosphorus enters 
water bodies through the weathering of phosphorus-
containing rocks and atmospheric precipitation. 
Currently, various anthropogenic sources of phosphorus 
are also widespread, which lead to the esterification of 
water bodies (Paytan and McLaughlin, 2007).

Phosphorus available to diatoms is present 
in water bodies as dissolved inorganic (mineral) 
phosphate (primarily orthophosphate, Pi) or in the 
form of a variety of dissolved organic phosphorus 
(DOP) compounds, including NA, phospholipids, 
phosphorylated proteins, and carbohydrates. (Lin 
et al., 2016). The most common soluble inorganic 
form of phosphorus taken up by phytoplankton is 
orthophosphate (Pi) anions (Alipanah et al., 2018). 
At the same time, the absorption of phosphorus is 
an energy-consuming process, ATP molecules are 
wasted (Lin et al., 2016). When the mineral phosphate 
concentration is depleted, phytoplankton growth often 
depends on the ability to use the much more abundant 
DOP by enzymatic hydrolysis with alkaline and acid 
phosphatase to Pi (Lin et al., 2013).

It was shown for P. tricornutum that diatoms limit 
phosphorus uptake under its lack, primarily by reducing 
the transport protein composition in the membrane 
(for example, permease) and by activating alkaline 
phosphatase, which breaks down organic phosphate on 
the cell surface. In addition, cell division occurs for two 
generations, but the concentration of phosphate in cells 
decreases in the next generation (Feng et al., 2015).

Cells replace membrane phospholipids with 
lipids that do not require phosphate (for example, 
P. tricornutum – sulfolipids), the production of 
phospholipases increases (Feng et al., 2015), which 
allows the use of phospholipids as a phosphate source 
(Martin et al., 2011; Zhang et al., 2016).

At an early stage of phosphate deficiency, the 
cell maintains the required level of photosynthesis and 
carbon fixation, however, the longer the restriction 
lasted, the more disturbances were found (Feng et 
al., 2015). The efficiency of photosynthesis decreases, 
while in P. tricornutum the expression of proteins 
important for this process (proteins of photosystem I, 
cytochrome c550 of photosystem II, subunits of ATP 
synthase beta and gamma) decreased. Interestingly, in 
Skeletonema costatum, on the contrary, an increase of 
the expression of proteins important for photosynthesis 
under phosphorus limitation was observed (Zhang et 
al., 2016).

After 48 hours of phosphate-deficient exposure, 
diatom cells also exhibited accumulation of neutral 

lipids (Feng et al., 2015), which is often seen under the 
other stressors described above.

For S. marinoi, morphological changes were shown 
on the 4th day after cultivation of cells with a deficiency 
of phosphorus – vacuolization, internal degradation of 
organelles, externalization of phosphatidylserine, as 
a sign of PCD. Increased expression of the DSP gene, 
which is believed to be associated with PCD processes, 
as well as the TSG101 (tumor susceptibility gene 101) 
gene, which controls cell division, has been shown. 
Expression ALDH (aldehyde dehydrogenase), GSHS 
(glutathione synthase) decreased as stress conditions 
developed (as the authors suggest, in this way cells 
implement an energy-saving strategy without spending 
resources on extra proteins), while the expression of 
GOX (glycolate oxidase), an enzyme that oxidizes 
glycolate, which important for photorespiration – was 
increased. The expression of metacaspase genes was 
also increased (Wang et al., 2020). For T. pseudonana, 
the researchers did not find significant generation 
of ROS, as well as signs of PCD when cultivated in a 
medium with a low amount of mineral phosphorus (Lin 
et al., 2017).

3. Stress signaling triggers PCD in diatoms

Infochemicals are signaling chemical compounds 
by which cells interact in a population. In the diatom 
arsenal there are several biologically active compounds 
belonging to the family of oxylipins. They include 
short chain polyunsaturated aldehydes (PUAs) and 
derivatives of hydroxy, keto, and epoxy hydroxy fatty 
acids (Fontana et al., 2007). It is assumed that these fatty 
acid oxidation products serve as a chemical reaction of 
diatoms to stress factors. The most common PUAs are 
decadienal, decatrienal, octodienal, octotrienal, and 
heptadienal (Wichard et al., 2005; Cutignano et al., 
2006).

This system is initiated by phospholipases and 
glycolipases after damage to the cell or chloroplast lipid 
membrane, resulting in the release of polyunsaturated 
fatty acids (FA), which are oxidized and cleaved to form 
polyunsaturated aldehydes (Pohnert, 2002; Cutignano 
et al., 2006). This is often observed when copepods feed 
on phytoplankton, and it is assumed that the secretion 
of these aldehydes serves to protect the population from 
further predator attacks, disrupting the development 
and reproduction of copepods (Caldwell et al., 2002), 
and also initiate the splitting of sea urchin, polychaete, 
and ascidian embryos (Caldwell et al., 2002; Lettieri et 
al., 2015; Ruocco et al., 2019).

The production of PUAs increases with 
increasing culture age, with limited nutrients and Si 
(Ribalet et al., 2007b; Vidoudez et al., 2008). It has 
been shown that oxidative stress occurs in diatom 
cells under the influence of decadienal, the expression 
of metacaspase genes increases, and morphological 
changes characteristic of programmed cell death occur 
(Vardi et al., 2008; Graff van Creveld et al., 2021). This 
is due to the fact that this aldehyde triggered a dose-
dependent calcium transient that has derived from 
intracellular store and subsequently, Ca2+ increase led 
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to nitric oxide what causes oxidative stress (Vardi et 
al., 2006). 

It has been shown in vitro that diatom PUAs are 
able to suppress the growth of other phytoplankton 
species (Ribalet et al., 2007a). However, the question 
remains whether decadienal is indeed capable of 
transmitting signals in a natural population of diatoms, 
since the concentrations of aldehyde in vitro, which 
cause programmed cell death, significantly exceed 
the possible concentrations in the natural population, 
according to the calculations of the authors (Dolch et 
al., 2017).

It can be hypothesized that PUAs may act to 
deter various groups of organisms, such as copepods 
and bacteria, as well as act as signals mediating 
interactions between phytoplankton, including a signal 
to stop flowering and start PCD.

4. Effects of bacteria on diatoms

Bacteria are present in the ecosystem along with 
phytoplankton, and their interactions occur in a wide 
range, from mutualism to competition and parasitism. 
Aquatic bacteria as heterotrophs obtain most of the 
carbon they need directly from phytoplankton (Fouilland 
et al., 2014). Coexistence led to the development of a 
mechanism that ensures the interaction of bacteria and 
diatoms with the help of chemicals. Diatoms that are 
able to recognize signals from bacteria are likely to 
have a greater competitive advantage than those that 
are not; the same applies to bacteria (Amin et al., 2012). 

Gram-negative bacteria produce acyl homoserine 
lactone (AHL) – hydrophobic molecules that can 
penetrate the membrane of diatoms and accumulate 
in their cells (Cuadrado-Silva et al., 2013). In turn, 
diatoms release extracellular organic biomolecules, 
often referred to as transparent exopolymer particles 
(TEP), either actively or as a product of cell lysis. It is 
assumed that diatoms can use TEP to attract certain 
types of bacteria (Fukao et al., 2010).

Bacteria can not only release chemicals into the 
environment in which diatoms live, but also actively 
attach to algae through several mechanisms. First, 
with the help of TEP, bacteria recognize the presence 
of diatoms and initiate attachment to TEP, which 
can also serve as a source of nutrients for bacteria. 
Second, bacteria also release exopolysaccharides (EPS) 
in response to the presence of phytoplankton, which 
can initiate attachment (Rinta-Kanto et al., 2012). 
In this case, a symbiosis can form between bacteria 
and diatoms. For example, bacteria produce vitamin 
B12, which diatoms need, and their co-cultivation 
significantly increases the viability of diatom cells 
(Croft et al., 2005).

Most of the iron in water bodies is represented 
by hard-to-digest ferric iron. Diatoms absorb ferrous 
iron best of all, but it is rarely available to them in this 
form. One of the iron uptake strategies for diatoms is 
the use of sideraphores, chelate compounds produced 
by bacteria (Kazamia et al., 2018). To effectively obtain 
iron from siderophores, diatoms must respond quickly 
to the appearance of bacteria in the environment. If 

diatoms can sense AHL produced by a siderophore 
producing bacterium, they can quickly mobilize iron 
assimilation mechanisms, thereby increasing their life 
advantage (Amin et al., 2012).

In addition, bacteria are able to protect diatoms 
by detoxifying the by-products produced during diatom 
metabolism. For example, epiphytic bacteria on the 
Antarctic diatom Amphiprora kufferathii help the diatom 
cope with oxidative stress caused by the production of 
hydrogen peroxide as cells enter the stationary phase. 
Hydrogen peroxide is involved in the formation of 
highly reactive hydroxide radicals, which can inhibit 
CO2 fixation in bacteria. Therefore, bacteria use their 
catalases to neutralize hydrogen peroxide (Hünken et 
al., 2008). 

However, the algicidal effect of bacteria is no 
less extensive. Bacteria can release chemicals that, 
among other things, have a devastating effect on 
diatom cells. These compounds have been shown to 
lead to the death of eukaryotic cells, resulting in the 
release of nutrients for bacteria, while the algicidal 
substance can be either secreted into the environment 
or produced after bacteria attach to algae (Kang 
et al., 2005; Paul and Pohnert, 2011; Wang et al., 
2016). It was showed (Wang et al., 2016) that the 
impact on Skeletonema sp. algicidal bacteria leads to 
vacuolization, degradation of organelles, destruction of 
chloroplasts and mitochondria, and destruction of the 
cell shell. Study of the effect of Bacillus mycoides on 
Ulnaria acus found the destruction of the cell shell, DNA 
fragmentation, the accumulation of neutral lipids in 
diatom cells, the destruction of the nuclear membrane, 
but intact chloroplasts and mitochondria (Bedoshvili et 
al., 2021). Diatoms, in turn, are also able to produce 
antibacterial substances. These substances are FA 
derivatives and may be species specific (Desbois et al., 
2008). These are polyunsaturated aldehydes, which also 
have antibacterial activity, apparently accumulating in 
bacterial membranes (Ribalet et al., 2008; Pepi et al., 
2017). It has been shown that Chaetoceros didymus is 
resistant to algicidal bacteria, since it produces specific 
proteases together with oxylipins (Paul and Pohnert, 
2013; Meyer et al., 2018).

5. Viruses trigger PCD in diatom phyto-
plankton

In 1989, it was found that water contains a large 
number of viruses – 2.8 × 108 viral particles (including 
bacteriophages) per milliliter of water (Bergh et al., 
1989), suggesting that viruses play a role in the ecology 
of aquatic organisms. Work gradually began to appear 
showing that viruses can cause death of phytoplankton 
cells (Bratbak et al., 1991; Cottrell and Suttle, 1991) 
and diatoms in particular (Tomaru et al., 2009). Like 
bacteria, viruses can limit phytoplankton blooms 
(Bratbak et al., 1991; Tomaru et al., 2009). In 2004, 
a lytic virus was first isolated that infects the diatom 
Rhizosolenia setigera (RsetRNAV) (Nagasaki et al., 
2004).

It is assumed that during viral infection, 
processes are triggered that lead to PCD in order to 
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limit the spread of the virus in the population. Virus-
infected phytoplankton have been shown to have 
typical features for PCD, including cell shrinkage, DNA 
fragmentation, and metacaspase activation (Bidle et al., 
2007; Vardi et al., 2009; Liu et al., 2018). However, the 
molecular responses of diatoms to viral infection have 
not yet been studied.

It has been shown that cells under stress (under 
silicon limitation etc.) undergo more active lytic stages 
of viral infection (Kranzler et al., 2019). It was reported 
the appearance of viruses infecting Chaetoceros sp. in the 
Chesapeake Bay, USA (Bettarel et al., 2005). They found 
the maximum viral abundance a month after the winter-
spring flowering of Chaetoceros. They hypothesized 
that a viral infection, due to an increase in the virus 
population in the water column, was responsible for 
stopping the flowering of the Chaetoceros host.

6. The response of diatoms to changes in 
the physical parameters

Lighting
Diatoms are passively transported by currents 

and turbulent mixing. They are brought to the surface 
of the water column where they must cope with intense 
light that can cause photo damage, and also descend 
to depths below the photic zone where solar energy 
is too low for oxygenic photosynthesis. In addition, in 
freezing water bodies, diatom cells are under a layer 
of ice and snow, where the penetration of sunlight is 
difficult.

The protein complexes of diatom pigments 
are called fucoxanthin-chlorophyll protein (FCP) 
complexes. Fucoxanthin allows diatoms to absorb 
more of the electromagnetic spectrum, especially the 
blue-green wavelengths that dominate in the aquatic 
environment (Bertrand, 2010). The main pigments 
involved in photoprotection are xanthophyll cycle 
pigments diadinoxanthin and diatoxanthin (Kuczynska 
et al., 2015).

PGR5 (Proton Gradient Regulation 5) has been 
found to play an important role in the adaptation of 
diatoms to changing light. PGR5 prevents excessive PSI 
recovery on the acceptor side by increasing the ratio of 
ATP/NADPH production through ATP generation and 
electron transport for Cyt b6f or PQ. Indeed, diatoms 
always experience frequent fluctuations in light 
intensity with high cell concentration, wind swell, and 
the surface lens effect (Zhou et al., 2021).

It is known that several species of diatoms 
survive for weeks and months and in some cases for 
several years in total darkness as vegetative dormant 
cells (Veuger and van Oevelen, 2011; Schaub et al., 
2017). Common features of resting diatom cells are a 
low metabolic rate and a condensed cytoplasm with 
chloroplasts localized in the center of the cell. Within a 
few hours or days after returning to favorable growth 
conditions, the normal internal structure of cells is 
restored and cell division resumes (Nymark et al., 
2013).

Surviving an extended period of darkness 
requires the maintenance of a photosynthetic apparatus 

vital for efficient photosynthesis when returning 
to favorable light conditions. During P. tricornutum 
study it was found that after 48 hours of darkness, 
the expression of light-harvesting complex genes and 
photosynthetic ability increased already within 30 
min after the illumination restoration (Nymark et al., 
2013). Also, it was found that by supporting important 
metabolic processes in the dark, the cells Fragilariopsis 
cylindrus retain the functionality of the photosynthetic 
apparatus, providing a quick recovery when the light 
returns. Proteomic analysis showed that in the dark, 
the concentration of enzymes of metabolic pathways 
involved in the processes of respiration, the tricarboxylic 
acid cycle, glycolysis, the Entner-Doudoroff pathway, 
the urea cycle, and the mitochondrial electron transport 
chain increased. Inside the plastid, carbon fixation 
ceased, and the upper sections of the glycolysis, 
gluconeogenesis, and pentose phosphate pathways 
became less active (Kennedy et al., 2019).

It has been shown that different diatom species 
use different survival strategies in the dark, which may 
affect their competitive advantage (Peters and Thomas, 
1996). The arctic benthic diatom Navicula perminuta 
used stored lipids, carbohydrates, and proteins as energy 
sources during 8 weeks of darkness, while phospho- 
and glycolipids of photosynthetic membranes remained 
unchanged (Schaub et al., 2017). The vegetative stages 
of temperate benthic diatoms survived one year of 
darkness, coinciding with an exponential decline in 
photosynthetic pigments (Veuger and van Oevelen, 
2011).

Diatom cells have been shown to survive in 
the dark by accumulating NO3

- and reducing it to 
ammonium, which is a process of anaerobic respiration 
(Kamp et al., 2011).

During the dark period, POC (particulate organic 
carbon) and PON (particulate organic nitrogen) 
decreased slightly, indicating that cellular metabolism 
(e.g. respiration) was reduced to a minimum rate. The 
content of POC in cultures decreased markedly only 
in the first week, which was probably due to the final 
division before growth stopped. There was a need for 
energy to maintain respiration in order to maintain 
vitality and, in particular, the ability to resume rapid 
growth as soon as light appeared (Peters and Thomas, 
1996).

Temperature
Different temperature ranges and temperature 

dependences of growth among species are thought to 
play an important role in algal competition (Kudo et 
al., 2008). Warming within a certain optimum range 
increases phytoplankton growth until reaching a 
maximum, and then, when the temperature becomes 
above the optimum, growth slows down sharply 
(Eppley, 1972). With an increase in temperature, 
diatom cells increase metabolic costs (for example, 
mitochondrial respiration) and the rate of enzymatic 
reaction increases (Kudo et al., 2008).

High temperatures can cause disruption of 
photosynthetic electron transport and carbon fixation 
mechanisms, leading to a decrease in the productivity 
and efficiency of photosynthesis (Falk et al., 1996). 
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An analysis of the fatty acid profiles of P. tricornutum 
also showed that thermal exposure negatively affects 
thylakoid lipids, consistent with the observed decrease 
in photosynthesis (Feijão et al., 2018).

The rate of protein synthesis increases 
significantly at high temperatures, although the number 
of ribosomes and their associated rRNA decreases, 
with the opposite effect with decreasing temperature 
(Toseland et al., 2013).

The rate of the enzymatic reaction is reduced by 
2-3 times with a decrease in temperature by 10°C. To 
overcome slow enzymatic rates at low temperatures, 
phytoplankton cells use a combination of two strategies: 
the evolution of cold-adapted enzymes, which have a 
thermal optimum much lower than their mesophilic 
counterparts, or an increase in the concentration of 
enzymes in the cell (Morgan-Kiss et al., 2006).

RUBISCO is believed to be the limiting factor 
for diatom blooms at low temperatures (Young et al., 
2015). A decrease in the concentration of chlorophyll 
a by 30% per cell volume was revealed when the 
cultivation temperature was reduced from 20 to 10°C 
for P. tricornutum (Kudo et al., 2008).

During cultivation of F. cylindrus cells at -1°C 
chlorophyll fluorescence and electron transport 
significantly decreased, while the concentrations of 
fucoxanthin, chlorophyll a and c increased. Within a 
few days, the cells acclimatized, and when cultured 
for several months, a higher electron transfer rate 
was observed compared to higher temperatures, and 
a decrease in pigment content was also observed. 
Exposure to this low temperature led to the suppression 
of genes encoding PSII proteins (psbA, psbC) and carbon 
binding (rbcL), but the expression of genes encoding 
chaperones (hsp70) and genes for the synthesis and 
turnover of plastid proteins (elongation factor EfTs, 
ribosomal protein rpS4, protease ftsH) increased (Mock 
and Hoch, 2005).

7. Conclusions

The successful evolutionary fate of diatoms 
depends on their ability to adapt to changes in 
environmental parameters. A quick response to stress 
factors is most often a change in the expression level of 
metabolic genes, the replacement of one enzyme system 
by another, the activation of the antioxidant system, 
and the production of chemicals both for signaling 
and for attacking consumers and bacteria. However, 
under prolonged exposure to stressful conditions, the 
cells lack resources for adaptation and PCD can be 
triggered (Supp. Table). The study of the reactions of 
diatoms to stress factors will reveal their methods of 
regulation, including the population size in adverse 
natural conditions, which may be PCD, as well as other 
molecular and cellular adaptive mechanisms.
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